Integrated logarithmic amplifiers for industrial applications

By Thomas Kugelstadt (Email: tk@ti.com)
Senior Systems Engineer, Industrial Systems

Many industrial applications measure physical quantities over a wide dynamic range. These applications use logarithmic amplifiers (log amps) to match a transmitter’s dynamic output to the linear input range of a signal gauge. Figure 1 shows a typical signal chain to measure photo currents over a dynamic range of seven decades.

Log amps of the past were built with hybrid techniques. Today’s CMOS technology enables the integration of the logging circuit and additional support functions, such as voltage references and uncommitted op amps, into a single chip.

This article describes the operation and architecture of integrated log amps and provides two application examples using the Texas Instruments (TI) LOG112 and LOG2112.

Operation
A log amp makes use of the logarithmic relationship between the voltage and current of a forward-biased diode. Figure 2 shows the characteristic of the forward current, given by the exponential function

$$I_F = I_{S(T)} \times \left(e^{V_F / mV_T} - 1 \right). \quad (1)$$

where V_F and I_F are the forward voltage and forward current of the diode, respectively; I_S is the theoretical reverse-saturation current; m is a correction factor; and V_T is the temperature-equivalent voltage. Exchanging the x for the y axes and vice versa yields the forward voltage as a logarithmic function of the forward current. Mathematically, this corresponds to solving Equation 1 for V_F:

$$V_F = m \times V_T \times \ln \left(\frac{I_F}{I_S} - 1 \right). \quad (2)$$

For a forward-biased diode, the forward current is larger by far than the reverse current ($I_F >> I_S$). Thus, Equation 2 simplifies to

$$V_F = m \times V_T \times \ln \left(\frac{I_F}{I_S} \right). \quad (3)$$

A simple log amp whose transfer function satisfies Equation 3 is shown in Figure 3. The op amp operates as an inverting amplifier with a feedback diode. With the diode being virtually anode-grounded, the op amp needs to generate a negative output voltage to forward bias the diode. For a given input current, I_{IN}, the corresponding output voltage, V_{OUT}, is

$$V_{OUT} = -m \times V_T \times \ln \left(\frac{I_{IN}}{I_S} \right). \quad (4)$$
The drawback of this circuit is that \(V_{OUT} \) depends not only on \(I_{IN} \) but also on \(m \), \(I_{S(T)} \), and \(V_T \), all of which are either current- or temperature-dependent.

- The correction factor, \(m \), takes into account the deviation between the diode characteristic and Shockley’s simplified theory of diodes. However, \(m \) strongly depends on the forward current, thus varying its value between 1 and 2.
- The reverse-saturation current, \(I_S \), is temperature-dependent. For a constant forward current, \(I_S \) doubles with every 10-K increase in temperature. Thus, for a 100-K rise in temperature, \(I_S \) increases by a factor of 1000.
- The temperature-equivalent voltage, \(V_T = k \times T/e_0 \), increases linearly with temperature. With Boltzman’s constant \(k = 1.38 \times 10^{-23} \text{ J/K} \), the electron charge \(e_0 = 1.6 \times 10^{-19} \text{ C} \), and an ambient temperature of \(T = 296 \text{ K (23ºC)} \), \(V_T \) yields

\[
V_T = \frac{1.38 \times 10^{-23} \text{ J/K} \times 296 \text{ K}}{1.6 \times 10^{-19} \text{ C}} = 25.5 \text{ mV}.
\]

When the circuit operates at a constant temperature, the impact of \(m \) still limits the measurable input range to 1 or 2 decades of acceptable accuracy. To eliminate \(m \), the diode is replaced by a transistor (Figure 4). Its exponential transfer characteristic in Figure 5 is similar to that of a diode. In contrast to a diode, however, the correction factor equals 1 and simplifies Equation 4 to

\[
V_{OUT} = -V_T \times \ln \frac{I_C}{I_{ES}}, \quad \text{or} \quad V_{BE} = V_T \times \ln \frac{I_C}{I_{ES}}.
\] (5)

The input current, \(I_{IN} \), becomes the collector current, \(I_C \); and \(I_S \) becomes the emitter reverse-saturation current, \(I_{ES} \). The elimination of \(m \) increases the measurable input range to several decades. \(V_{OUT} \), however, is still temperature-dependent via \(I_{ES(T)} \) and \(V_T \). Therefore, it is impossible to determine whether a change in \(V_{OUT} \) is caused by the input current or by a change in temperature.

To avoid output changes due to temperature, the temperature-compensated log amp in Figure 6 is required. Here, generating the difference of two logarithms eliminates \(I_{ES} \). From the previous example, we take the logarithmic relationship between the basis-emitter voltage, \(V_{BE} \), and the collector current, \(I_C \), for both transistors, \(Q_1 \) and \(Q_2 \):

\[
V_{BE1} = V_T \times \ln \frac{I_{C1}}{I_{ES1}}, \quad \text{and} \quad V_{BE2} = V_T \times \ln \frac{I_{C2}}{I_{ES2}}.
\]
The two logging transistors build a difference amplifier whose output voltage, \(V_1 \), yields the difference of both base-emitter voltages:

\[
V_1 = V_{BE1} - V_{BE2} = V_T \times \ln \left(\frac{I_{C1}}{I_{ES1}} \right) - V_T \times \ln \left(\frac{I_{C2}}{I_{ES2}} \right).
\] \(\text{(6)} \)

With matched and isothermal transistors, \(I_{ES1} = I_{ES2} = I_S \), and Equation 6 simplifies to

\[
V_{I(T)} = V_T \times \ln \left(\frac{I_{C1}}{I_{C2}} \right).
\] \(\text{(7)} \)

A remaining temperature dependency exists via only \(V_T \). Via the voltage divider, \(R_1 \) and \(R_2 \), \(V_1 \) represents only a part of the entire circuit's output voltage, \(V_{OUT} \):

\[
V_{OUT(T)} = \left(1 + \frac{R_1}{R_2} \right) \times V_1 = \left(1 + \frac{I_{C1}}{I_{C2}} \right) \times V_T \times \ln \left(\frac{I_{C1}}{I_{C2}} \right).
\] \(\text{(8)} \)

To compensate for the effect of \(V_T \), \(R_2 \) is replaced by a temperature-dependent resistor with a positive temperature coefficient. This keeps

\[
\left(1 + \frac{R_1}{R_2(T)} \right) \times V_T
\]

constant over a certain temperature range. Practical values for the temperature coefficient vary between 3500 and 3700 ppm/K.

During the manufacturing process of log amps, the internal components and the temperature coefficient are trimmed to a fixed value. In addition, the natural logarithm is converted to \(\log_{10} \) by applying a correction factor, \(n = 2.3 \), according to \(\ln x = 2.3 \times \log x \). The expression

\[
\left(1 + \frac{R_1}{R_2(T)} \right) \times V_T \times 2.3
\]

becomes a constant, \(q \), with the unit \(\text{V/decade} \), simplifying the computation of \(V_{OUT} \)

\[
V_{OUT} = q \times \log \left(\frac{I_{C1}}{I_{C2}} \right).
\] \(\text{(9)} \)

Log-amp structure

Figure 7 shows a block diagram of the integrated log amp, LOG112. The actual logging circuit consists of the amplifiers, \(A_1 \) and \(A_2 \), and the transistors, \(Q_1 \) and \(Q_2 \). The designation of the collector currents, \(I_{C1} \) and \(I_{C2} \), changes to \(I_1 \) and \(I_2 \). In most cases, \(I_1 \) represents the input current to be measured, while \(I_2 \) is the reference current for the logarithmic computation.

The device minimizes external component count by providing a voltage reference and an uncommitted op amp, \(A_3 \), on-chip. The reference allows \(I_2 \) to be generated via an external resistor, \(R_{REF} \). Via \(A_3 \), the logarithmic output signal, \(V_{LOGOUT} \), can be filtered or further amplified. \(A_3 \) also can be configured as a comparator to provide a loss-of-signal indication.

The LOG112 is trimmed to provide an output voltage of 0.5 V per decade of input current. The device uses patented temperature compensation in which \(R_2 \) is laid out as an aluminum frame with a temperature coefficient of 3700 ppm/K, resulting in extremely temperature-stable operation. For an input current of 10 \(\mu \)A, for example, the output voltage changes by only 50 \(\mu \)V/K.

The output voltage of the log amp is made available at the \(V_{LOGOUT} \) pin:

\[
V_{LOGOUT} = 0.5 \times \log \left(\frac{I_1}{I_2} \right),
\]

with input currents ranging from 100 \(p \)A to 3.5 mA. The voltage at the \(V_{OUT3} \) pin is defined via the external gain, \(G = 1 + R_F/R_G \), and yields

\[
V_{OUT3} = G \times V_{LOGOUT} = G \times 0.5 \times \log \left(\frac{I_1}{I_2} \right).
\]
Application examples

The circuit in Figure 8 controls the optical output power of a laser diode (LD₁). With the output power decreasing over the lifetime of the diode, a control loop that keeps the output power constant is required. In the feedback path, a fraction of the output signal is fed back via a photodiode (PD₁) and converted into electrical current.

The laser is calibrated by making the reference current, IREF, equal to the PD₁ current, I₁. Deviations between IREF and I₁ are converted into an error signal and applied to the bias input of the laser-diode driver. The driver then changes the bias current of LD₁ until the error signal diminishes to zero.

Another application example is the constant-gain control and gain adjustment of an op amp shown in Figure 9. Two log amps measure the optical input and output power of the amplifier. A difference amplifier subtracts the output signals of both log amps and applies an error voltage to the proportional-integral-derivative (PID) controller. The controller output adjusts a voltage-controlled current source (VCCS), which then drives the actual pump laser. The amplifier operates at the desired optical gain when the error voltage at the PID output is zero.

Figure 8. Controlling the optical output power of a laser diode

Figure 9. Constant-gain control and gain adjustment of an op amp
The log amp at the amplifier input builds the reference source. Its output voltage is

\[V_{\text{OUT1}} = \log \frac{I_1}{I_{\text{REF1}}} \]

where \(I_1 \) is the input photo current and \(I_{\text{REF1}} \) is an adjustable reference current. The log amp at the amplifier output provides an output voltage of

\[V_{\text{OUT2}} = \log \frac{I_2}{I_{\text{REF2}}} \]

where \(I_2 \) is the output photo current and \(I_{\text{REF2}} \) is a fixed reference current.

It is important to observe that \(I_2 = I_1 \times G_{\text{OPT}} \), where \(G_{\text{OPT}} \) is the optical gain factor. In steady state, the output voltages of both log amps are equal (\(V_1 = V_2 \)), and

\[\log \frac{I_1}{I_{\text{REF1}}} = \log \frac{I_1 \times G_{\text{OPT}}}{I_{\text{REF2}}} \quad \text{or} \quad \frac{I_1}{I_{\text{REF1}}} = \frac{I_1 \times G_{\text{OPT}}}{I_{\text{REF2}}} \]

Solving for \(G_{\text{OPT}} \) yields

\[G_{\text{OPT}} = \frac{I_{\text{REF2}}}{I_{\text{REF1}}} \]

The preceding equation shows that the optical gain of the amplifier is adjusted simply by reducing \(I_{\text{REF1}} \) by a factor of \(G_{\text{OPT}} \) smaller than \(I_{\text{REF2}} \). In addition to the constant-gain control, this circuit also allows the electronic gain setting of \(G_{\text{OPT}} \) in the range of 0 to 30 dB.

LOG2112 is well suited for this application. The device contains two log amps to measure the input and output power; an on-chip voltage reference to generate \(I_{\text{REF2}} \); and two uncommitted op amps configurable as difference amplifier and PID controller.

Conclusion

TI offers a series of integrated, high-precision log amps with varying input-current ranges and output-scale factors.

Related Web sites

analog.ti.com
www.ti.com/sc/device/LOG112
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page
support.ti.com

TI Semiconductor KnowledgeBase Home Page
support.ti.com/knowledgebase

Product Information Centers

Americas
Phone +1(972) 644-5580
Fax +1(972) 927-6377
Internet/Email
support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa
Phone
Belgium (English) +32 (0) 27 45 54 32
Finland (English) +358 (9) 25173948
France +33 (0) 1 30 70 11 54
Germany +49 (0) 8161 80 33 11
Israel (English) 1800 949 0107
Italy 800 79 11 37
Sweden (English) +46 (0) 8567 555 22
United Kingdom +44 (0) 1604 66 33 99

Internet
support.ti.com/sc/pic/euro.htm

Japan
Fax +81(0) 8161 80 2045
Internet/Email support.ti.com/sc/pic/japan.htm
International +81-3-3344-5317
Domestic 0120-81-0036

Domestic
Internet
support.ti.com/sc/pic/japan.htm

Asia
Phone
International +886-2-23788800
Domestic Toll-Free Number
Australia 1-800-999-084
China 800-820-8882
Hong Kong 800-96-5941
Indonesia 011-803-8861-1006
Korea 080-551-2804
Malaysia 1-800-88-3973

Fax 886-2-2378-6800
Internet
support.ti.com/sc/pic/asia.htm

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks: All trademarks are the property of their respective owners.

Mailing Address: Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

© 2005 Texas Instruments Incorporated