Power conservation options with dynamic voltage scaling in portable DSP designs

By Jeff Falin (Email: j-falin1@ti.com)
Low Power DC/DC Applications, High Performance Analog

Extending the useful life of the battery in portable electronics with a DSP core is a challenge for portable electronics manufacturers. The relationship $P_C \sim (V_C)^2 f$ describes the power consumption of a DSP core, where P_C is the core power consumption, V_C is the core voltage, and f is the core clock frequency.

Thus, power consumption can be reduced by lowering the internal clock frequency and/or even more by lowering the core supply voltage. Dynamic voltage scaling (DVS) is the term used to describe methods of adjusting core supply voltage to minimize power consumption. This article explains two generic methods of implementing DVS and highlights the advantages and disadvantages of each method.

Both methods require the use of a power IC with an adjustable output voltage and an externally applied control signal (V_X). As shown in Figures 1a and 1b, the first method uses FET switches and resistors in parallel with either the top or bottom feedback resistors to alter the feedback network. The second method, in Figure 1c, uses the control signal or signals and an additional resistor to alter the feedback network.

Figure 2 shows the timing of the control signals and of the output voltage. Table 1 explains the different delays and their respective causes.

Table 1. Timing delays and their causes

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>INFLUENCING FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt_1</td>
<td>Fall time of V_X</td>
</tr>
<tr>
<td>Δt_2</td>
<td>Rise time of V_X</td>
</tr>
<tr>
<td>Δt_3</td>
<td>Response delay</td>
</tr>
<tr>
<td>Δt_4</td>
<td>Rise/fall time of V_X, IC response time, feedback network settling time</td>
</tr>
<tr>
<td>Δt_5</td>
<td>V_{OUT} fall time</td>
</tr>
<tr>
<td>Δt_6</td>
<td>V_{OUT} rise time</td>
</tr>
</tbody>
</table>

The term Δt_i represents the time delay between the control signal and the output voltage. The delays are influenced by various factors, including the source of the control signal, the rise and fall times of the feedback network, and the load current and output capacitance of the power IC.
Each method in Figure 1 will be examined in detail. Although most adjustable power ICs can be used to implement DVS, the author chose the TPS62200 300-mA, synchronous buck converter because it maintains high efficiency over a wide load range by switching from PFM at light loads to PWM at heavy loads.

Switched bottom-side feedback resistor

The polarity of the control signal determines the placement of the FET switch. If a low signal triggers the step-down of the core voltage, then an NMOS FET switch and additional resistor can be placed in parallel with the bottom feedback resistor. An example application is shown in Figure 3.

Figure 4 shows an example of DVS using the circuit of Figure 3, where the input capacitance of Q2 is 110 pF. The input voltage is 3.3 V, and the output voltage switches between 1.5 V and 1.1 V with a 10-Ω load. The rise and fall times of VX are 10 µs. The overshoot during the transition from high to low voltage is due to the negative edge of the control signal being injected into the feedback pin, FB, by the gate-drain capacitance of the FET. Pulling FB low causes VO to go high. Using lower-valued feedback resistors and higher-valued capacitive divider capacitors reduces the overshoot. Also, using a FET with lower input capacitance reduces the overshoot. Figure 5 shows an example of DVS using the circuit of Figure 3, where RT = 200 kΩ, RB = 165 kΩ, CT = 100 pF, CB = 220 pF, and Q1 is a BSS123 with input capacitance of 30 pF.

If the control signal’s ramp rate (Δt1 and Δt2 of Figure 1) can be slowed either at the source or by an RC filter, like the one created by RF and CF in Figure 3, the overshoot can be further minimized. Slowing the fall time of VX to 150 µs removes the overshoot entirely, as shown in Figure 6.
Switched top-side feedback resistor

If a high control signal triggers a step-down of the output voltage, then the NMOS FET must be placed in series with the high-side feedback resistor, as shown in Figure 7. The FET must be carefully selected to ensure that (1) V_X is higher than V_{FB} by at least the FET’s threshold voltage and (2) the input capacitance is low to minimize injection of V_X onto V_{FB}. Unlike the low-side FET switch in Figure 2, the high-side FET’s source pin connects directly to the converter’s feedback pin. Since the FET’s gate-source capacitance shorts V_X to V_{FB} during its transition, the output is susceptible to overshoot and undershoot; however, lower feedback resistors reduce both.

Figure 8 shows an example of DVS using the circuit of Figure 7, with $V_{IN} = 3.3$ V, a 10-Ω load, and control signal rise and fall times of 5 µs.

At output currents below 60 mA, the TPS62200 switches from PWM mode to PFM mode, and the observed undershoot and overshoot change. If V_X’s ramp rate (Δt_1 and Δt_2 of Figure 1) can be slowed either from the source or by an RC filter, like the one created by R_F and C_F in Figure 7, the overshoot is further minimized. Figure 9 shows results from using the same circuit as in Figure 7 but with a 1-kΩ load and control signal rise and fall times of 3 µs and 500 µs, respectively.

Although exact values for the feedback components and rise and fall times of the control signal are dependent on the specific application, the following generalizations can be made. Lower-valued feedback components reduce noise susceptibility at the feedback node and therefore reduce potential overshoot and undershoot caused by the switching transistor. However, these lower-valued feedback components consume power and reduce efficiency at light load. The rise and fall times of the control signal affect overshoot and undershoot. The optimal rise and fall times should be determined experimentally for the specific application, especially for the load current and dc/dc converter operating mode.
Two voltages with one additional resistor

A simpler alternative for generating multiple voltages is to use VX to inject current into the feedback network through an additional resistor, thereby changing the output voltage. Figure 10 shows the circuit in Figure 11 transitioning between VO1 = 1.5 V and VO2 = 1.1 V, with only one additional resistor, RX.

For the following discussion, refer to Equations 1–4 at the bottom of this page. Equations 1 and 2 were written by summing the currents at the feedback node, VFB. Simultaneously solving Equations 1 and 2, then substituting back and solving for RB, yields Equations 3 and 4. These equations show how to compute the values of the injection resistor, RX, and bottom feedback resistor, RB, in Figure 11, given RT = 402 kΩ, VO1 = 1.5 V, VO2 = 1.1 V, VX_HI = 3.3 V, VX_LO = 0 V, and VFB = 0.5 V.

Pulsing VX with varying duty cycles varies its average dc level. This allows a single control voltage and one additional resistor, RX, to generate multiple output voltages. Equations 1 and 2 can be solved to find RX and RB for the lowest desired output voltage and highest VX. Then, solving Equation 4 for VO and substituting in progressively lower values for VX_HI results in progressively higher values of VO. Figure 12 on the next page shows such an implementation.

Choosing RF in Figure 12 two orders of magnitude below RX eliminates the need to include it in the computation of RX. Choosing CF to form a low-pass filter with ~3-dB roll-off at least two orders of magnitude below the frequency of VX makes the ripple being injected into VFB negligible.

\[
\begin{align*}
\frac{V_{FB}}{R_B} + \frac{V_{FB} - V_{O1}}{R_T} &+ \frac{V_{FB} - V_{X_LO}}{R_X} = 0 \\
\frac{V_{FB}}{R_B} + \frac{V_{FB} - V_{O2}}{R_T} &+ \frac{V_{FB} - V_{X_HI}}{R_X} = 0 \\
R_B &= -\frac{V_{FB}R_T}{-V_{O1} + V_{O2} + V_{X_LO} - V_{X_HI} - V_{FB} - V_{O2} + V_{X_LO}V_{O1}} \\
R_X &= R_B \times R_T \times \frac{-V_{FB} + V_{X_HI}}{V_{FB}R_B + V_{FB}R_T - V_{O2}R_B}
\end{align*}
\]
Three voltages from two additional resistors

If varying the duty cycle of \(V_X \) is not an option but additional control voltages (e.g., \(V_Y \)) are available, the converter can still be configured to switch between multiple voltages. In addition to the two feedback resistors, \(R_T \) and \(R_B \), this solution requires one less resistor than the number of required output voltages. For example, if the application requires switching between three different voltages, the solution requires two injection resistors, \(R_X \) and \(R_Y \), as shown in Figure 13.

As Table 2 shows, there are four logic states that can be derived from the two logic signals, \(V_X \) and \(V_Y \); however, only three logic states are used.

<table>
<thead>
<tr>
<th>(V_X)</th>
<th>(V_Y)</th>
<th>DESIRED (V_0) (V)</th>
<th>ACTUAL (V_0) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>LO</td>
<td>1.80</td>
<td>1.80</td>
</tr>
<tr>
<td>LO</td>
<td>HI</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>HI</td>
<td>LO</td>
<td>Don't care</td>
<td>1.40</td>
</tr>
<tr>
<td>HI</td>
<td>HI</td>
<td>1.10</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Table 2. Control signal vs. output voltage
Similar to the computations for Figure 11, the circuit operation of Figure 13 can be evaluated with four nodal equations (one for each logic state), which can be solved for R_X, R_Y, and R_B in Equations 5, 6, and 7.

\[
R_X = R_T \times \frac{V_X_{LO} - V_X_{HI}}{-V_{O2} + V_{O4}} \quad (5)
\]

\[
R_Y = R_T \times \frac{-V_Y_{LO} + V_Y_{HI}}{V_{O1} - V_{O2}} \quad (6)
\]

\[
R_B = \left(\frac{V_{O1}/V_{FB} - 1}{R_T} \right) \left(\frac{1}{R_X} - \frac{1}{R_Y} \right)^{-1} \quad (7)
\]

V_{O3} is not included in the equations, indicating that one of the four voltages is not independent of the others. The exact state/voltage that is not independent is determined by the method used to derive Equations 5, 6, and 7 but is one of the states during which the control signals are opposites (the second or third state in Table 2). In this case, the third state with V_X_{HI} and V_Y_{LO} is the dependent state and produces 1.40 V. Equations 5, 6, and 7 were used to find values for resistors R_X, R_Y, and R_B in Figure 13, given $R_T = 402 \, \Omega$, $V_{O1} = 1.8 \, V$, $V_{O2} = 1.5 \, V$, $V_{O4} = 1.1 \, V$, $V_X_{HI} = 3.3 \, V$, $V_X_{LO} = 0 \, V$, $V_Y_{HI} = 3.3 \, V$, $V_Y_{LO} = 0 \, V$, and $V_{FB} = 0.5 \, V$. Figure 14 shows the transition between the levels when $V_{IN} = 3.3 \, V$ and $R_{LOAD} = 10 \, \Omega$, using the circuit in Figure 13.

When injection resistors are used instead of FET switches, the transitions between voltages are much smoother.

Dynamic voltage scaling is a means of conserving power and therefore of extending battery life in portable electronics. There are two basic methods of implementing DVS using any adjustable power IC and an external control signal. If the control signal has a poor tolerance or can drive only capacitive loads, then the first method, consisting of FET switches in series with additional feedback resistors, is recommended. If the control signal has an acceptable tolerance and can drive a small resistive load, then the second method, using the control signal to inject current into the feedback network, is a simpler option and offers smoother transitions between voltages.

Related Web sites

- analog.ti.com
- www.ti.com/sc/device/TPS62200
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com

Applications

- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephone: www.ti.com/telephone
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks: All trademarks are the property of their respective owners.

Mailing Address: Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

© 2005 Texas Instruments Incorporated