Power control design key to realizing InfiniBand™ benefits

By Jonathan M. Bearfield
Power Interface Product Line Manager

The InfiniBand technology is a modularly scalable switched-fabric architecture. It currently uses a 2.5-Gbit/sec bidirectional serial point-to-point interface whose roadmap extends from 500 Mbit/sec out to 6 Gbit/sec, with auto-speed sensing. It was defined to solve many of the problems seen in the parallel interconnects of today's servers and system area networks; and a great deal of time and effort has gone into defining the digital interface and control structure. However, the details of implementing appropriate power control have been left up to the designer.

From a power perspective, InfiniBand is a true hot-plug implementation. Power is not only applied to the main system during module insertion and removal but is also present at the connector. This is not true for compact PCI, PCIx, PCMCIA or most other hot-plug applications. The fact that this is a truly hot-swappable socket creates significant hurdles and places several limitations on the power interface designers. There is a need to manage and optimize inrush currents, system voltage droops, and module and backplane capacitance. The designer also needs to determine the level of fault protection required in both the system and the module.

The InfiniBand specification defines two power connections for the modules. The first is bulk power. It is a 12-V (±2 V), 2.5-A supply that is intended for all of the major functions of the module. The second is auxiliary power. It is a 5-V (±5%), 260-mA supply intended for standby or configuration modes of operation, but it can be implemented as the only supply required by the card for operation. Due to its low power, the auxiliary power rail is a rather straightforward implementation, especially since the card is always allowed to draw power from it. On the other hand, the bulk power rail can provide up to 50 W to a module, depending on the module’s size and power configuration. Along with this, there are several modes of operation where the bulk power load on the card must be turned off.

In order for the bulk power hot-swap power management (HSPM) solution to be effective, it must have logic level controls and reporting capabilities. It is important for the

Figure 1. InfiniBand bulk power solution

![InfiniBand Bulk Power Solution Diagram]

Note: A 15-V zener diode may be required to limit the line transient voltage within the maximum voltage range of the TPS2330.
HSPM to control the rise times of the power FETs in the circuit, limit current to the load, and report overloaded conditions to the system. In order to maintain a clean and stable power rail on the card, considerable capacitance may be required. This means that the HSPM selected must be able to turn on into a highly capacitive load and manage the di/dt demand characteristics of the circuit.

Managing the 12-V bulk power rail during the hot insertion and removal of modules is, however, only half of the solution. As most circuitry no longer runs at 12 V, it will be necessary to efficiently regulate 12 V down to 3.3 V, 1.8 V, or whatever other voltages the card requires. The switching regulator topology selected may add to the bulk capacitance required in the module and may also demand specific voltage ramp rates or enabling sequences for proper operation.

Of the various options for InfiniBand bulk power management, one solution that takes into consideration all of the hurdles and requirements mentioned uses an HSPM, such as TPS2330, and a power supply controller, such as TPS5102 (see Figure 1). With minimum external circuitry other than discretes, a truly effective solution is possible. The TPS2330 HSPM is designed to manage voltage rails with a nominal value from 2.7 V to 13.5 V. Its gate pins implement a voltage ramp drive topology, which provides a very graceful turn-on for the external FETs. It also has an integrated adjustable circuit breaker and a Power Good reporting function for system status updates. The TPS5102 is a high-efficiency, dual-output power controller. Its topology requires minimal input and output capacitance, and its operating frequency reduces the size requirements of other external components. It has several system control features that benefit InfiniBand, such as independent standby and soft-start configurations.

Related Web sites
www.ti.com/sc/docs/products/analog/tps2330.html
www.ti.com/sc/docs/products/analog/tps5102.html
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services with TI products or services. TI reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products, services, or documentation, at any time and without notice.

Reproduction in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service.

Use of such information may require a license from a third party beyond the rights granted to TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties that could materially affect future results and operations. These statements are identified by the words "believe," "foresee," "anticipate," "expect," "estimate," and other similar words. Such statements are based on our current expectations and are inherently subject to uncertainty and variations in results due to risks and uncertainties that are subject to change. These include risks and uncertainties associated with our objective and strategy for our business, costs related to our products and services, sales of our products, market acceptance of our products, technology and industry trends, competitive products and prices, the industries we serve, dependence on key personnel, new developments in our business, and other factors discussed in the section entitled "Item 1A. Risk Factors" in our most recent Annual Report on Form 10-K available on the SEC website.

TI assumes no obligation to update any forward-looking statements in this publication. The inclusion of any website link in this publication does not imply endorsement or approval of the materials on the linked website. TI is not responsible for the materials on any website operated by any third party.

Trademarks: InfiniBand is a service mark of the InfiniBand Trade Association. All other trademarks are the property of their respective owners.

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

© 2005 Texas Instruments Incorporated

C011905