Pressure transducer-to-ADC application

By John Bishop
Application Specialist, Advanced Analog Products/Op Amp Applications

Introduction
A major application of operational amplifiers (op amps) is converting and conditioning signals from transducers into signals that other devices such as analog-to-digital converters (ADCs) can use. Conversion and conditioning are usually necessary because the transducer and ADC ranges and offsets are rarely the same. Op amp circuits are also useful in signal filtering for compatibility with ADC circuits.

This article shows how to use a bridge-type transducer for measuring gas or liquid pressure, and for measuring strain in mechanical elements. A basic understanding of active and passive analog devices and their use is helpful to use this article to complete a design.

Transducer information
The sensor tested in this application is a pressure transducer SX01 produced by SenSym Inc. It is one of a set of solid-state pressure sensors with available full-scale ranges of 1 to 150 psi (7 kPa to 1 MPa). Three types of pressure measurement are available: gauge, differential, and absolute.

TRW, another supplier of such sensors, has an on-line product catalog with a link to data sheets at www.trwinc.com. The device evaluated here has a full-scale pressure of 1 psig (7 kPa). Its price is low relative to other devices in this range; however, the low price comes at the expense of no temperature compensation, a drawback that can be overcome by adding inexpensive, external compensation components. The SenSym data sheet defines three circuits for this purpose; the method chosen here uses an NPN bipolar transistor and two resistors.

Excitation source information
For a bridge transducer to work, it must be excited by a voltage source. Because the stability of the excitation voltage affects the accuracy of the measurement signal, a regulated voltage source is necessary. This application assumes the availability of a regulated 5-V supply.

Choice of ADC
For this design, the TLV2544 ADC was selected because it has an analog input range of 0 to 5 V (see Reference 1). Ideally, the span of the amplified sensor signal should fill this range. The voltage needed to power this device is a single 5-V supply.

Choice of op amp
The ADC's 0- to 5-V analog-input range and the use of a single 5-V power supply required a rail-to-rail output device. The op amp also needed to be able to handle the full input range of the transducer. For these reasons, the TLV2474 was chosen (see Reference 2).

Defining the circuit
The amplified pressure transducer signal is connected to an ADC. Since the ADC connects to a microprocessor or DSP, final calibrations can be done in software. Therefore, the 0- to 1-psi range should span the center of the ADC's range. For calculating gain, the output range of the amplifier is 1.25 to 3.75 V. Figure 1 is the schematic of the amplifier circuit for this application.

The output of the circuit is

\[V_{OUT} = \frac{2R_4 + R_5}{R_3} \left(\frac{R_5}{R_5 + R_7} \right) \left(\frac{R_6 + R_2}{R_2} \right) - V_{IN} \left(\frac{2R_1 + R_6}{R_3} \right) + V_{REF} \left(\frac{R_5}{R_5 + R_7} \right) \left(\frac{R_6 + R_2}{R_2} \right) \]

When \(R_7 = R_6, R_5 = R_2, \) and \(R_4 = R_1, \) Equation 1 reduces to

\[V_{OUT} = (V_{IN2} - V_{IN1}) \left(\frac{2R_1}{R_3} + 1 \right) \left(\frac{R_6}{R_2} \right) + V_{REF}. \]

Solving for \(R_3 \)

\[R_3 = \frac{2R_1}{(V_{OUT} - V_{REF})R_2 - 1}. \]

The sensitivity of the bridge is typically 4.0 mV/V/psi. The pressure is 1 psi and the excitation voltage is 5 V. Therefore, the differential output of the sensor \((V_{IN2} - V_{IN1})\) from 0 to 1 psi is 20 mV. Setting \(R_1 = R_4 = R_6 = R_7 = 20.0 \ \text{k}\Omega \) (1% value) and \(R_2 = R_5 = 2.0 \ \text{k}\Omega \) results in a full-scale output range of 2.5 V when \(R_3 = 3.478 \ \text{k}\Omega \).

A unique feature of this precision instrumentation amplifier is the ability to control the total gain of the amplifier with one resistor.

Calibration devices
The resistor that controls gain is \(R_1 \). A potentiometer has a larger temperature coefficient and is more likely to drift over time than a fixed resistor. Placing a fixed resistor in series with a potentiometer minimizes this problem. The values calculated in the following equations are based on about 10% gain adjustment.

\[R_{3A} = R_1 - R_1(5\%) = 143 \ \text{k}\Omega \) (1% resistor)\n\[R_{3B} = R_2(10\%) = 50 \ \text{k}\Omega \] (Cermet potentiometer)

The potentiometer for adjusting offset, \(R_{13} \), is not critical; but a 10-k\Omega multi-turn potentiometer uses 0.5 mA.

One of the goals of design is to reduce components without compromising function. If the offset voltage of the op amps is low enough, replacing potentiometers with fixed resistors is possible. Offset and gain calibration
would then be done using software in a DSP or microprocessor. This is possible because the bottom and top 25% of the input range of the ADC are not presently used. In this condition, VREF would be initially set by replacing R13 with a voltage divider. The offset drift of the op amp causes the output to move up or down into the unused areas. Variations on the resistors cause small gain errors, but these should be of less concern than the offset voltage. Instead of calibrating with potentiometers, using the offset and gain variables in calculations can generate a calibrated output.

Signal filtering
If the transducer is installed on the amplifier board, the input filter circuits and shielded wires are not needed. Connecting a transducer to an input subjects the wiring to noise signals because of the surrounding electrical and magnetic environment. To prevent this noise from interfering with the measurement signals, some shielding is necessary. Using a twisted pair from the transducer to the conversion circuit and shielding this pair (grounding the shield at the instrument) reduces the noise.

Even when the transducer is connected through correctly shielded cabling, some noise is brought into the amplifier along with the measurement signal. Without an input filter, the op amp would act as an RF detector, converting high-frequency signals from other devices into signals with low-frequency components. Placing a resistor and capacitor on the input forms a low-pass filter and prevents radio-frequency signals from interfering with the measurement signal. The frequency response of this filter is

\[
f_C = \frac{1}{2\pi RC}
\]

Thus, if R14 and R15 are 10 kΩ, and C2 and C6 are 10 nF, then \(f_C \) is about 1600 Hz.

The next two stages have capacitors in parallel with the feedback resistors. The frequency response of these filters is also defined by Equation 6. Using 20 kΩ for the feedback resistor gives a cutoff frequency, \(f_C \), of about 800 Hz.

References
For TI information related to this article, you can download an Acrobat Reader file at www-s.ti.com/sc/techlit/litnumber and replace “litnumber” with the TI Lit. # for the following document.

Document Title	TI Lit. #
1. “TLV2544, TLV2548 2.7-V to 5.5-V, 12-bit, 200-kSPS, 4-/8-channel, Low-power Serial Analog-to-Digital Converters with Autopower-down,” Data Sheet | slas198
2. “TLV2470, TLV2471, TLV2472, TLV2473, TLV2474, TLV2475, TLV247xA Family of 600-µA/Ch 2.8-MHz Rail-to-Rail Input/Output High-Drive Operational Amplifiers with Shutdown,” Data Sheet | stos232

Continued on next page
Appendix A. Calculations

The following values and equations were used in this article. Values in bold are calculated. All entered values are non-bold.

Given:
- \(\text{Input}_{MIN} = 0.0 \text{ psi} \) ⇒ \(\text{Output}_{MIN} = 1.25 \text{ V} \)
- \(\text{Input}_{MAX} = 1.0 \text{ psi} \) ⇒ \(\text{Output}_{MAX} = 3.75 \text{ V} \)
- Sensitivity = 0.004 mV/V/psi

Excitation voltage = 5 V
- Full-scale span = 0.02 V
- Nominal Gain = 125

- \(R_1 = R_4 = R_7 = R_6 = 20 \text{ k}\Omega \)
- \(R_5 = R_2 = 2 \text{ k}\Omega \)
- \(V_{IN} = 0.02 \text{ V} \)
- \(V_{OUT} = 2.5 \text{ V} \)
- \(R_3 = 3478 \Omega \)

- \(R_{3A} = 3304 \Omega \) ⇒ \(3320 \Omega \)
- \(R_{3B} = 348 \Omega \) ⇒ \(500 \Omega \)

- \(\text{C}_4 = \text{C}_6 = 0.01 \mu\text{F} \)
- \(\text{C}_3 = \text{C}_5 = \text{C}_7 = 0.01 \mu\text{F} \)
- \(R_{14} = R_{15} = 10 \text{ k}\Omega \)
- \(F_C = 1592 \text{ Hz} \)
- \(F_C = 796 \text{ Hz} \)

R_8 = 3.22 \text{ k}\Omega
R_9 = 1.43 \text{ k}\Omega

U1a
TLV2474

\(+5 \text{ V}\)
\(\text{C}_2\)
\(10 \text{ nF}\)
\(\text{R}_3\)
\(3220 \Omega\)
\(\text{R}_4\)
\(10 \text{ k}\Omega\)
\(\text{R}_5\)
\(20 \text{ k}\Omega\)
\(\text{R}_6\)
\(2 \text{ k}\Omega\)
\(\text{R}_7\)
\(20 \text{ k}\Omega\)
\(\text{C}_3\)
\(10 \text{ nF}\)
\(\text{R}_8\)
\(14 \text{ k}\Omega\)
\(\text{R}_9\)
\(10 \text{ k}\Omega\)
\(\text{R}_1\)
\(20 \text{ k}\Omega\)
\(\text{R}_1\)
\(10 \text{ k}\Omega\)
\(\text{C}_4\)
\(10 \text{ nF}\)
\(\text{R}_2\)
\(2 \text{ k}\Omega\)
\(\text{C}_5\)
\(10 \text{ nF}\)
\(\text{R}_3\)
\(1430 \Omega\)
\(\text{R}_3\)
\(3320 \Omega\)
\(\text{R}_3\)
\(500 \Omega\)
\(\text{R}_3\)
\(2 \text{ k}\Omega\)
\(\text{R}_3\)
\(2 \text{ k}\Omega\)

\(\text{U}_1b\)
TLV2474

\(\text{U}_1c\)
TLV2474

\(\text{U}_1d\)
TLV2474

\(\text{V}_{OUT}\)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service. Where applicable, use of TI components in life support devices or systems is agreed to be solely at the customer's risk, and the customer agrees to defend, indemnify and hold TI harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of the customer's use of TI components in such life support devices or systems. TI is not responsible or liable for such altered documentation.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com

Applications
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

Worldwide Technical Support

Internet
- TI Semiconductor Product Information Center Home Page: support.ti.com
- TI Semiconductor KnowledgeBase Home Page: support.ti.com/sc/knowledgebase

Product Information Centers

Americas
- Phone: +1(972) 644-5580
- Fax: +1(972) 927-6377
- Internet: support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa
- Phone: +33 (0) 27 45 54 32
- Fax: +33 (0) 217 59 48
- Internet: support.ti.com/sc/pic/euro.htm

Japan
- Phone: +81-3-3344-5317
- Fax: +81(0) 811-2045
- Internet: support.ti.com/sc/pic/japan.htm

Asia
- Phone: +886-2-23786800
- Fax: +886-2-23786800
- Internet: support.ti.com/sc/pic/japan.htm

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks: All trademarks are the property of their respective owners.

Mailing Address: Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

© 2005 Texas Instruments Incorporated