Using quad and octal ADCs in SPI mode

By Tom Hendrick
Data Acquisition Applications—Dallas

Introduction
This article describes the steps required to interface a microprocessor-based system using a serial peripheral interface (SPI) port of the quad and octal family of serial analog-to-digital converters (ADCs) listed in Table 1.

Serial ADC interface
Serial communication with this family of devices is accomplished through three serial inputs and a tri-state serial output: chip select (/CS), serial input clock (SCLK), serial data input (SDI), and serial data output (SDO). These 4 pins provide a direct 4-wire interface to most microprocessors. Figure 1 shows a typical ADC-to-microprocessor interface.

Frame sync and EOC/INT
A frame sync (FS) pin is provided for a typical DSP interface and is normally tied high when used in microprocessor applications. This family of devices also features a programmable end-of-conversion/interrupt (EOC/INT) pin. When programmed as EOC, the output goes from a high to low state at the falling edge of the 16th clock, indicating that the sampling process has been completed. EOC returns to a high state upon the completion of the conversion process. When programmed as /INT, it can act as an interrupt to the host processor. /INT goes from a high to low state at the end of the conversion process and is cleared automatically on the following /CS falling edge.

ADC read and write cycles
Many microprocessors offer an SPI port that transmits and receives data in 8-bit packets. The ADCs, however, use a 16-bit data string for configuration and provide serial data output in a 16-bit format.

Configuring the ADC requires the microprocessor to issue back-to-back data transfers while holding the SS/CS line low. The processor’s transmit buffer is loaded first with the upper byte of configuration data, sending the SS/CS line low and starting the SCLK, which transmits the serial data to the ADC. The processor’s SPI interrupt flag is then cleared, the transmit buffer is loaded with the lower byte of configuration data, and the transfer process begins again. Figure 2 shows the host mode configuration cycle (write 0xA000 to ADC).

The same sequence could be used to read the contents of the configuration register or the contents of the FIFO. The serial data output would simply be configured to perform the requested read operation (write 0x9000 or 0xE000).

Continued on next page
ADC sample and convert cycles

Each sample/convert cycle requires the user to issue a valid channel select command in the upper nibble of the SDI string. The valid channel selection codes consist of the hex values 0x0000 through 0x9000. FIFO Read (0xE000) will also allow a conversion cycle to take place.

Hex commands 0xA000 through 0xD000 and 0xF000 are reserved for access to the configuration register and internal test modes. More information about these commands can be found in the respective device data sheets listed under References at the end of this article.

Another factor to consider when using these devices in the microprocessor mode is the sample and conversion time. When the TLV2544 is operated in short sampling with the internal conversion clock, for instance, sampling is not complete until the 16th falling edge of SCLK (see Figure 3). Another 3.5 µs are required for the conversion to take place. If chip select is asserted low before the conversion cycle is complete (EOC going Hi), the current conversion data will be lost.

If the microprocessor is set to clock polarity = 1 and clock phase = 1 as shown in Figure 4, the ADC requires the user to issue a third, or “null data,” transfer to the SPI port. Since the ADC samples, converts, and shifts data out on the rising edge of the clock, the first falling edge is ignored. As shown in Figure 4, the EOC signal appears on the 16th falling clock edge after the first rising. The length of conversion time and number of dummy write transfers the processor has to make is dependent upon the mode in which the ADC is being used, and the clock phase and polarity settings of the SPI port.

The TLC series of devices does not contain an internal conversion clock and depends on SCLK throughout the entire sample/conversion process. This requires that additional “null data” SPI transfers be conducted. The total number of clock cycles is dependent upon the operating mode of the ADC being used. The TLC2544 (in single-shot mode), for example, would require 16 clocks for channel selection and sampling, plus an additional 16 clocks for conversion. A minimum of four 8-bit SPI blocks would be needed.

Reading valid data

The serial data out from these devices is pre-released by 1/2 clock cycle, plus a delay. This means that while valid output data is available on the rising edge of SCLK, the rising edge also triggers the shifting out of the next data bit. With low clock speeds, it may appear as if data is changing when it should be valid. A processor’s setup and hold time requirements may affect its ability to read correctly the data presented by the converter. Figures 5 and 6 show the relationship between SCLK, SDO, and SDI with a 4-MHz and 20-MHz clock, respectively.

The code example at the bottom of the next page was written for the Motorola 68HC912 and was assembled using ASM12.EXE. The code samples and stores data from channel 0 of a TLV2544.

References

For more information related to this article, you can download an Acrobat Reader file at www.s.ti.com/sc/techlit/ and replace “litnumber” with the TI Lit. # for the materials listed below.

Document Title TI Lit. #
1. TLV1504/1508/1544/2544/2548, TLC1514/1518/2554/2558 10-Bit and 12-Bit ADC EVM User's Guide slau029
2. TLV1504,TLV1508 Data Sheet slas251
3. TLV1544,TLV1548 Data Sheet slas139
4. TLV2544, TLV2548 Data Sheet slas198
5. TLC1514,TLC1518 Data Sheet slas252
6. TLC2554,TLC2558 Data Sheet slas220

Related Web sites

www.dataconverter.com
www.ti.com/sc/docs/products/analog/device.html
Replace device with tlvc1514,tlvc1518,tlc2554,tlc2558,tlv1504,tlv1508,tlv1544,tlv2544, or tlv2548
Code example

; SPI program using the 68HC912 uP and a TLV2544 ADC with Frame Sync hi via SP3

;* ___________________________;
;* Equates and Variables
;* ___________________________

SP0CR1: equ $D0 ;SPI 0 Control Register 1
SP0CR2: equ $D1 ;SPI 0 Control Register 2
SP0BR: equ $D2 ;SPI 0 Baud Rate Register
SP0SR: equ $D3 ;SPI 0 Status Register
SP0DR: equ $D5 ;SPI 0 Data Register
PORTS: equ $D6 ;Port S Data Register
DDRS: equ $D7 ;Port S Data Direction Register

; User Variables

Upper_Byte: EQU $0B00
Lower_Byte: EQU $0B01
Upper_CFIG: EQU $0B02
Lower_CFIG: EQU $0B03

;* MAIN PROGRAM
;* ___________________________
ORG $0800 ; User code data area,
DATA FCB 00,01 ; start main program at $0800
DATA
MAIN:
BSR INIT ; Subroutine to initialize SPI registers
JSR SAMPLE ; Subroutine to start transmission

Continued on next page
Code example (Continued)

;* Initialization Subroutine
;* ———————————————————————————————————

INIT:
BSET DRRS, #%11101100 ; Configure PORT S input/output:
 ; SS/CS, SCK, MOSI, MISO, PS3, PS2, TXD, RXD
BSET SP0BR, #$00 ; Set Baud Rate
MOVB #$50, SP0CR1 ; Configure SPI(SP0CR1)
 ; SPIE, SPE, SWOM, MSTR, CPOL, CPHA, SSOE, LSBF
MOVB #$00, SP0CR2 ; Configure SPI(SP0CR2):
 ; -,-,-,-,-,-,-,-,-,SSWAI, SPCO
MOVB #$88, PORTS ; Sets ADC CS Hi, PS Hi
BCLR PORTS, #%10000000 ; Select ADC
 ; Configure ADC
MOVB #$A0, Upper_CFIG ; Write 0xA000 to set up Host Communication.
MOVB Upper_CFIG, SP0DR ; Put data in XMIT Buffer
JSR FLAG ; Clear SPI Flag
MOVB #$04, Lower_CFIG ; Select EOC Mode
MOVB Lower_CFIG, SP0DR ;
JSR FLAG ; Clear SPI Flag
BSET PORTS, #$80 ; Sets ADC CS Hi
MOVB #$00, UPPER_BYTE ; Set initial values
MOVB #$00, LOWER_BYTE ; Set initial values
RTS

;* —————————————————————-
;* Sample / Convert
;* —————————————————————-

SAMPLE:
MOVB #$08, PORTS ; Sets ADC CS Low
MOVB #$20, SP0DR ; Tell ADC what channel to read and generate SCLK for ADC
JSR FLAG ; Clear SPI Flag
 ; Store received data
LDAA SP0DR ; Load first ADC Sample
MOVB #$00, SP0DR ; Write zero value to data register to generate SCLK for ADC
JSR FLAG ; Clear SPI Flag
LDAB SP0DR ; Load second ADC Sample
STD DATA ; Store ACCA and ACCB in Data
nop ; Extra time for conversion nop
MOVB #$88, PORTS ; Sets ADC CS Lo
JMP SAMPLE ; Go back and do it again

;* —————————————————————-
;* Clear SPI Flag Subroutine
;* —————————————————————-

FLAG: BRCLR SP0SR,#$80,FLAG ; Wait for flag.
 RTS
.end
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com

Applications
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

TI Worldwide Technical Support

Internet
- TI Semiconductor Product Information Center Home Page: support.ti.com
- TI Semiconductor KnowledgeBase Home Page: knowledgebase.ti.com

Product Information Centers

Americas
- Phone: +1(972) 644-5580
- Internet/Email: support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa
- Belgium (English): +32 (0) 27 45 54 32
- Finland (English): +358 (0) 9 25173948
- France: +33 (0) 1 30 70 11 54
- Germany: +49 (0) 8161 80 33 11
- Israel (English): 1800 949 0107
- Italy: 800 79 11 37
- Fax: +49 (0) 8161 80 2045
- Internet: support.ti.com/sc/pic/euro.htm

Japan
- Phone: +81-3-3344-5317
- Internet/Email: support.ti.com/sc/pic/japan.htm
- Domestic: 0120-81-0036

Asia
- International: +886-2-23788800
- Domestic (Toll-Free Number): Toll-Free Number
- Australia: 1-800-999-084
- China: 800-820-8882
- Hong Kong: 800-96-5941
- Indonesia: 001-803-8861-1006
- Korea: 090-551-2804
- Malaysia: 1-800-38-3873
- Fax: +886-2-2378-6308
- Internet: support.ti.com/sc/pic/Asia.htm

C011905

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks: All trademarks are the property of their respective owners.

Mailing Address: Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

© 2005 Texas Instruments Incorporated