Optimal output filter design for microprocessor or DSP power supply

By Rais Miftakhutdinov
System Engineering, Power Management Products

Introduction
Tight dynamic tolerances for supply voltages of next-generation microprocessors and DSPs at high slew-rate transitions from sleep mode to full-power operation and backwards require fast-transient-response power supplies along with a special decoupling technique. The analysis and optimization of synchronous-buck converters with hysteretic controllers at load-current transients has been presented in References 1 and 2. This article presents a detailed optimization procedure for output filter selection to meet the load-current transient requirements at minimum cost and size. The electrolytic, OS-CON, POSCAP, and ceramic capacitors are compared in a power supply that corresponds to Intel's VRM 8.4 requirements (see Reference 3). These design examples outline the trade-off between cost, size, and efficiency of the power supply and help the user to choose the optimal solution for any particular application.

Microprocessor or DSP power supply model
The model shown in Figure 1 presents the microprocessor or DSP power distribution system.

The model includes a synchronous-buck converter with an ideal controller, output inductor (LO), and output bulk capacitor (CO) with equivalent series resistance (ESR) and equivalent series inductance (ESL). The equivalent resistor (RB) represents the added resistance of traces and connectors and characterizes a resistive voltage drop through the supply path. The equivalent inductor (LB) characterizes an inductive voltage drop through the traces and connectors. The ideal controller has a feedback loop without any delay and limitations on the duty cycle covering the whole possible range from zero to one. In such a case, the converter has minimum peak-to-peak output-voltage transient. The hysteretic controllers from Texas Instruments with relatively small delays and a narrow hysteresis window, such as TPS5210, TPS5211, TPS56XX, TPS56100, and others, are good approximations of the ideal controller with the optimal transient-response characteristics.

Analytical equations were derived for the voltages and currents through the main components of the model in Figure 1 as a function of time both for the load-current step-down and step-up transients. These equations were included in the MATHCAD program to view the voltage and current transient waveforms and to build optimization curves that are described later in this article. To verify the derived equations, the MATHCAD transient waveforms were compared with the measured ones under the same conditions. The measurements were fulfilled on the evaluation board TPS5210SLVP-119. As one can see from Figure 2, the theoretical and measured waveforms are very close for the load-current step-down and step-up conditions.

Impact of system parameters on transients
Dependence on switching-cycle position
The output-voltage transient response depends on the position of the switching cycle when the load-current transient occurs. If the load current steps down, the excessive energy of an output inductor has to be delivered to the output capacitor. The worst case for the step-down transition is when the transient occurs at the end of an upper FET conduction time because the inductor current has its maximum. At this moment the inductor stores the maximum energy while the output ripple voltage also has its maximum. So the transient effect is the most significant at this moment, causing the greatest output voltage spikes in comparison with any other moment (Figure 3).

By contrast, the worst case for the step-up transition is when the transient happens at the end of the switching cycle, because the inductor current and output voltage ripple have their minimum at this moment. Only the output capacitor supplies the load during the step-up transient, while the inductor restores its energy and current to the new load-current level.

Influence of supply-path parasitics
The voltage transient waveforms on the converter output pins (point VA in Figure 1) and on the microprocessor package supply pins (point VB in Figure 1) are different because the supply-path resistance (RB) and inductance...
Figure 2. Theoretical (a, c) and measured (b, d) waveforms during load-current step-down (a, b) and step-up (c, d) transitions

(a) Theory

(b) Measurement

(c) Theory

(d) Measurement

Theoretical waveforms show the output voltage (top) and load-current (bottom) transients. Measured waveforms include voltage ($V_{DS}$) of the low-side FET (Ch1: 20 V/div), output voltage (Ch4: 50 mV/div), and load current (Ch3: 14.5 A/div).

Figure 3. Output voltage (bottom curve) and inductor current (dashed) waveforms for the different instants when the load-current (top, solid) step-down transition occurs

(a) Worst case: Transient occurs at the end of the upper FET's conduction time

(b) Best case: Transient occurs at the end of the switching cycle
Continued from page 22

\((L_B)\) cause the additional voltage drop. If the output current step \((\Delta I_O)\) and slew rate \((SR)\) are defined as

\[
\Delta I_O = I_O(\text{MAX}) - I_O(\text{MIN})
\]

\[
SR = \frac{\Delta I_O}{t_O},
\]

where \(t_O\) is the output current transition duration, then the additional voltage drop \((V_B)\) through the supply paths is defined by

\[
V_B = VR_B + VL_B = \Delta I_O \times R_B + SR \times L_B.
\]

Assume that \(R_B = 1.5\ \text{mohm}; L_B = 1.0\ \text{nH}; \Delta I_O = 23.8\ \text{A};\) and \(SR = 20\ \text{A/µs} in accordance with the VRM 8.4 requirements. Then the voltage drop through the supply path is

\[
V_B = 35.7\ \text{mV} + 20\ \text{mV} = 55.7\ \text{mV}.
\]

For the 1.65-V output power supply, this means almost 3.8%. This example shows why it is important to keep the output filter capacitors as close as possible to the microprocessor package to avoid a significant voltage drop due to supply-path parasitics.

**Optimal output inductor**

It seems obvious that the lower output inductor value enables better transient-response characteristics because of faster inductor current change to the new level after the load-current transient occurs. The example in Figure 4 shows that, in reality, after some optimal point (Figure 4b), further decreasing of the inductor value increases the peak-to-peak transient amplitude because the output ripple rises significantly. As shown later, the optimal inductor value depends on switching frequency and the type of output bulk capacitors.

**Two extreme values of an output-voltage transient**

Typical load-current transient waveforms are shown in Figure 5. The output-voltage waveform has two extreme values, \(V_{m1}\) and \(V_{m2}\). For most applications, the transient slew rate of the load current is much higher than the maximum slew rate of the output inductor current. Because of that, the first extreme value, \(V_{m1}\), depends mainly on the output capacitor and supply-path parasitics. It is not affected significantly by the controller transient-response characteristics.

The second extreme value, \(V_{m2}\), depends on resistive components \(ESR\) and \(R_B\), capacitive component \(C_O\), inductor value \(L_O\), and the converter characteristics, including switching frequency and type of control. \(V_{m2}\) does not exist if the following inequality is fulfilled:

\[
ESR \times C_O > m \times t_s \times \left(\frac{1}{2} + \frac{\Delta I_O}{\Delta I_L}\right),
\]

where \(t_s\) is a switching cycle, and \(\Delta I_L\) is a peak-to-peak ripple portion of the output inductor current. The parameter \(m\) depends on the type of transient. For the worst-case step-down transient, \(m = 1 - D\), and for the worst-case step-up transient, \(m = D\). Of course, only the first spike has to be considered in this situation during the design.

Assume that the output filter capacitors are connected in parallel and that each capacitor has the characteristics \(C_{O1}, ESR_{1}\), and \(ESL_{1}\). The number “1” after a parameter means that that parameter relates to one of many capacitors connected in parallel. It is shown in Reference 2 that if \(\Delta V_{req}\) is the maximum allowable peak-to-peak transient tolerance, then the required number of output bulk capacitors, \(N_1\) and \(N_2\), to meet the conditions \(V_{m1} = \Delta V_{req}\) and \(V_{m2} = \Delta V_{req}\), respectively, can be defined as in Equations 5 and 6 at the bottom of this page. Equations 5 and 6 can be used for the optimal output filter design.

**Active droop compensation**

Active droop compensation is an effective technique to do that. The droop compensation means that the dc output-voltage level of the converter is set to the highest level within the specification window at no-load condition and to the lowest level at full-load. This approach degrades the static load regulation but increases the output-voltage dynamic tolerance by as much as twofold, thus reducing the number of bulk capacitors required. For the same output filter, this technique allows a decrease in the peak-to-peak output-voltage transient response. The popularity of this idea is confirmed by the fact that it has numerous names like “Programmable Active Droop\textsuperscript{TM},” “Active Voltage Positioning,” “Adaptive Voltage Positioning,” “Summing-Mode Control,” etc. The transient waveforms with and without active droop compensation are shown in Figure 6. One can see that without droop compensation (Figure 6a), the output-voltage peak-to-peak amplitude is 146 mV and exceeds the requirements, as shown by the cursors. With droop compensation (Figure 6b), the peak-to-peak transient is only 78 mV, keeping the

Continued on page 26
Figure 4. Transient waveforms with different inductor values ($L_0$)

(a) $L_0 = 1.6 \mu H$, $V_{O(MAX)} = 79$ mV, $t_{reco} = 34 \mu S$

(b) $L_0 = 0.8 \mu H$, $V_{O(MAX)} = 62$ mV, $t_{reco} = 19 \mu S$

(c) $L_0 = 0.4 \mu H$, $V_{O(MAX)} = 72$ mV, $t_{reco} = 12.5 \mu S$

Figure 5. Typical load-current transient waveforms

(a) Without droop compensation ($V_{OUT(P–P)} = 146$ mV)

(b) With droop compensation ($V_{OUT(P–P)} = 78$ mV)

Channel 2 shows output voltage (50 mV/div.), Channel 3 shows load current (10 A/div.), and the cursors show the required limits for the output voltage.

Figure 6. Active droop compensation technique
Continued from page 24

output voltage well within the requirements for the same load-current transient conditions.

Optimal output filter selection procedure

The following step-by-step design procedure shows how to select output capacitors, an inductor value, and a switching frequency that are optimized for a specific application. For this design the typical VRM 8.4 requirements are used as an example:

\[
\begin{align*}
V_{\text{IN}} &= 5 \text{ V}, \\
V_{\text{OUT}} &= 1.65 \text{ V}, \\
\Delta V_{\text{OUT}}(\text{dc}) &= -80 \text{ mV} + 40 \text{ mV}, \\
\Delta V_{\text{OUT}}(\text{ac}) &= -130 \text{ mV} + 40 \text{ mV}, \\
I_{\text{O(MAX)}} &= 26 \text{ A}, \\
I_{\text{O(MIN)}} &= 2.2 \text{ A}, \\
\Delta I_{\text{O}} &= 23.8 \text{ A}, \\
\Delta V_{\text{req}} &= 180 \text{ mV}, \\
SR &= 20 \text{ A/µs}, \\
R_{B} &= 1.5 \text{ mΩ}, \\
L_{B} &= 1 \text{ nH}.
\end{align*}
\]

1. Definition of the worst-case transient

Select which type of transient, a load-current step-up or step-down, is the most important to optimize. The transient, caused by the load-current transition, is completed when the inductor current has reached the new steady-state current level. The inductor current slew rate depends on the voltage applied to the inductor. This voltage is equal to \(V_{\text{IN}} - V_{\text{OUT}}\) during a load-current step-up, or to \(V_{\text{OUT}}\) during a load-current step-down. For most microprocessor and DSP applications, usually \((V_{\text{IN}} - V_{\text{OUT}}) > V_{\text{OUT}}\). This means that the worst case is defined by the load-current step-down transition because the lower voltage, \(V_{\text{OUT}}\), changes the inductor current more slowly. In such a case the load-current step-down has to be optimized first; then, after the output filter selection, the load-current step-up transient has to be verified to meet requirements.

2. Maximum peak-to-peak dynamic tolerance

An accurate output-voltage budget needs to be done to determine a maximum dynamic output-voltage tolerance, \(\Delta V_{\text{req}}\). The dynamic and static supply-voltage limits have to be compared with all potential tolerances, including set-point accuracy, time and temperature variation, and line and load regulation. Use the droop compensation and adjust the nominal output voltage to get the maximum possible \(\Delta V_{\text{req}}\). Figure 7 shows the output-voltage budget calculation for this particular example. For the step-down transient, the required window is:

\[
\begin{align*}
V_{\text{req}} &= 1,730 \text{ mV} - 1,570 \text{ mV} - 2 \text{ mV} - 2 \times 6 \text{ mV} - 50 \text{ mV} \\
&= 96 \text{ mV}
\end{align*}
\]

For the step-up transient, it is:

\[
\begin{align*}
V_{\text{req}} &= 1,690 \text{ mV} - 1,520 \text{ mV} - 2 \text{ mV} - 2 \times 6 \text{ mV} - 50 \text{ mV} \\
&= 106 \text{ mV}
\end{align*}
\]

The required droop compensation is:

\[
\text{Droop} = 106 \text{ mV} - 16 \text{ mV} - (1,570 \text{ mV} - 1,520 \text{ mV} - 2 \text{ mV}) \\
&= 42 \text{ mV}
\]

Table 1. Comparison of different types of capacitors

<table>
<thead>
<tr>
<th>TYPE</th>
<th>VENDOR</th>
<th>PART NUMBER</th>
<th>(V_{\text{dc}}) (V)</th>
<th>CAPACITANCE (µF)</th>
<th>ESR (mohm)</th>
<th>ESL (nH)</th>
<th>SIZE (mm)</th>
<th>RELATIVE COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum electrolytic</td>
<td>Rubycon</td>
<td>6.3ZA1000</td>
<td>6.3</td>
<td>1000</td>
<td>24</td>
<td>4.8</td>
<td>(\varnothing 10 \times 16)</td>
<td>1</td>
</tr>
<tr>
<td>OS-CON</td>
<td>Sanyo</td>
<td>4SP820M</td>
<td>4</td>
<td>820</td>
<td>8</td>
<td>4.8</td>
<td>(\varnothing 10 \times 10.5)</td>
<td>6</td>
</tr>
<tr>
<td>POSCAP</td>
<td>Sanyo</td>
<td>4TPC150M</td>
<td>4</td>
<td>150</td>
<td>40</td>
<td>3.2</td>
<td>7.3 \times 4.3 \times 1.9</td>
<td>3</td>
</tr>
<tr>
<td>Ceramic</td>
<td>Murata</td>
<td>GRM23SY5V226Z10</td>
<td>10</td>
<td>22</td>
<td>20</td>
<td>0.5</td>
<td>3.2 \times 2.5 \times 1.35</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Figure 7. Output-voltage budget for VRM 8.4 power supply (not scaled)
3. Output bulk capacitor selection

Equations 5 and 6 show that the number of output bulk capacitors, N1 and N2, can be decreased if capacitors with low ESL1, ESR1, and high enough capacitance, C01, are used. Electrolytic, OS-CON, POSCAP, and ceramic capacitors are the most popular candidates for this application. Table 1 shows the main characteristics of capacitors that have been selected for the comparison in this design. This table does not restrict the list of capacitors and vendors, and the selected capacitors illustrate only the trade-off between different types based on cost, size, reliability, and efficiency. The capacitor vendors usually provide the impedance and ESR curves based on measurements with sinusoidal waveforms. The ESL value usually is not specified. For better design accuracy, the ESR and ESL have to be estimated by measuring capacitor reaction on the high-slew-rate linear charge or discharge current if the capacitor is intended for use in microprocessor or DSP power supplies. Because of this, some numbers in the table may differ from the specification data.

For the ESL and ESR estimate, the parasitic inductance and resistance of the traces and vias required for capacitor mounting have to be included. Usually, many smaller capacitors connected in parallel yield lower ESL and ESR compared with larger capacitors. Small surface-mount capacitors can be located as close as possible to the microprocessor or DSP package. This is important to minimize Rb and Lb values.

4. Output filter optimization curves

The number of capacitors, N1 and N2, as a function of output inductance (L0) and switching frequency (f_s = 1/τ_s) are shown in Figure 8 for the electrolytic, OS-CON, POSCAP, and ceramic capacitors.

Continued on next page
One can see that the first spike curves, N1 (dashed), do not have an extreme value and increase rapidly at low output inductance. The second spike curves, N2 (solid), have minimum value at some output inductance. In most cases the curves N1 cross the curves N2 at two points. The lowest-integer number of output capacitors, which is still higher than the cross-section of curves N1 or N2, is the minimum number that satisfies the requirements. The inductance has to be selected as close as possible to the cross-section points of both curves, or in-between. To avoid variation in the transient response due to component tolerances, it is wise to select the inductance in the region where the slew rate of the curves is not too high.

It is shown that the number of aluminum electrolytic and OS-CON capacitors does not drop significantly at frequencies higher than 200 kHz. The POSCAP capacitors work effectively at up to 350 kHz. The ceramic capacitors work well at 500 kHz and at higher frequencies. Here, the switching frequency is rather restricted by the power losses in semiconductors.

One can see that, for the aluminum electrolytic and OS-CON and partly for the POSCAP capacitors, the curve N1 is typically higher than the curve N2. This is because they have relatively high ESL1 and large capacitance C01. The number of capacitors N1 also rises rapidly if the supply-path stray inductance is too high. The additional high-frequency decoupling helps to decrease equivalent ESL and to reduce the number and cost of bulk capacitors.

In accordance with this design example, aluminum electrolytic and OS-CON capacitors in the 100- to 200-kHz switching-frequency range and with the output inductance value around 1 to 2.0 µH are preferable for applications requiring low power losses. The POSCAP capacitors have lower ESL1, but their number is higher because of relatively high ESR1 and low capacitance C01. Their preferable application is low-height DC-DC converters with a switching-frequency range from 250 to 300 kHz. The optimal value for the output inductor is around 0.7 µH. The number of ceramic capacitors might be too large at frequencies lower than 500 kHz. Their preferable application area is minimum-size, high-frequency converters. One can see that their ESL1 is very low, but the impact of the second extreme value is significant because of the low capacitance C01. The system cost, temperature range, available space, reliability, cooling conditions, and life of the product have to be considered during final selection of the output filter.

Assume that the aluminum electrolytic capacitor has been selected for further consideration. Figure 8a shows that, at 200-kHz switching frequency and with a 2-µH inductor, the required number of capacitors is 18 because of the high first spike. The number of electrolytic capacitors in this case can be decreased if a few high-frequency decoupling capacitors are added to decrease the impact of ESL and LB. Seven 805-size ceramic capacitors of 1 µF each have been added. Each capacitor has an ESL1 of 2.6 nH, including inductance of vias and traces. The equivalent inductance of 7 capacitors placed very close to the microprocessor is 2.6 nH/7 = 0.37 nH. For this design, the load-current slew rate and supply-bus inductance are SR = 20 A/µs and LB = 1 nH. Adding the high-frequency decoupling capacitors decreases the slew rate roughly three times in this case:

\[ SR_{\text{new}} = SR \times \frac{0.37 \text{ nH}}{1 \text{ nH}} = 7.4 \text{ A/µs} \]

The new optimization curves for the aluminum electrolytic capacitors with high-frequency decoupling are shown in Figure 9. One can see that curves N1 and N2 are much closer to each other because the high-frequency decoupling lowers the effect of inductive parasitics. The optimal inductor value, 1.5 µH, is selected, and the number of capacitors is 12 instead of 18 without the additional 7 ceramic capacitors of 1 µF each.

The transient waveforms based on this design are shown in Figure 10. One can see that the output voltage at low load is shifted at higher levels because of active droop compensation. Both step-up and step-down transients are acceptable for microprocessors in accordance with the VRM 8.4 requirements.

**Conclusion**

A power-supply system for powering high-slew-rate transient loads, such as a microprocessor or DSP, was analyzed. The selected model, based on practicality and accuracy, included a synchronous-buck converter with the controller, output inductor, output bulk capacitor with parasitics, and power-supply traces between the bulk capacitors and the microprocessor or DSP package. The accuracy of the model and derived equations was confirmed by comparison with the measurement results. It was shown how the different parameters of the model influence transient-response characteristics. A step-by-step optimal design procedure for the minimum-size and least costly output filter was suggested based on the derived equations. A design example of a DC-DC converter in accordance with the VRM 8.4 requirements was presented, and different types of bulk capacitors like aluminum electrolytic, OS-CON, POSCAP, and ceramic were compared.
Figure 10. Transient waveforms of an optimized output filter with aluminum electrolytic capacitors

(a) Load-current step-down

(b) Load-current step-up

References

Related Web sites
http://power.ti.com
www.ti.com/sc/docs/tools/analog
www.ti.com/sc/select
## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service. Resale of TI products or services does not constitute a license from TI to use such products or services in combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

## TI Worldwide Technical Support

### Internet

<table>
<thead>
<tr>
<th>TI Semiconductor Product Information Center Home Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>support.ti.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TI Semiconductor KnowledgeBase Home Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>support.ti.com/knowledgebase</td>
</tr>
</tbody>
</table>

### Product Information Centers

<table>
<thead>
<tr>
<th>Americas</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium (English)</td>
<td>+32 (0) 27 45 54 32</td>
<td>+31 (0) 546 87 95 45</td>
</tr>
<tr>
<td>Finland (English)</td>
<td>+358 (0) 9 25173548</td>
<td>+7 (0) 95 7850415</td>
</tr>
<tr>
<td>France</td>
<td>+33 (0) 1 30 70 11 54</td>
<td>+34 902 35 40 28</td>
</tr>
<tr>
<td>Germany</td>
<td>+49 (0) B181 80 33 11</td>
<td>+46 (0) 8567 555 22</td>
</tr>
<tr>
<td>Israel (English)</td>
<td>1800 949 0107</td>
<td>+44 (0) 1604 66 33 99</td>
</tr>
<tr>
<td>Italy</td>
<td>800 79 11 37</td>
<td></td>
</tr>
<tr>
<td>Fax</td>
<td>(49) 8181 80 2945</td>
<td></td>
</tr>
<tr>
<td>Internet/Email</td>
<td>support.ti.com/sc/pic/americas.htm</td>
<td>support.ti.com/sc/pic/america.htm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Europe, Middle East, and Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
</tr>
<tr>
<td>Belgium (English)</td>
</tr>
<tr>
<td>China</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>Germany</td>
</tr>
<tr>
<td>Israel (English)</td>
</tr>
<tr>
<td>Italy</td>
</tr>
<tr>
<td>Fax</td>
</tr>
<tr>
<td>Internet/Email/Internet</td>
</tr>
</tbody>
</table>

| Japan                          |
| Phone                          |
| International                  | +81-3-3344-5317        |
| Domestic                       | 0120-81-0036           |
| Internet/Email                 |                     |
| International/Email/Internet   | support.ti.com/sc/pic/japan.htm |
| Domestic                       | www.ti.co.jp/pic/     |

| Asia                           |
| Phone                          |
| International                  | +886-2-23788800        |
| Domestic                       | Toll-Free Number       |
| Australia                      | 1-800-999-084         |
| China                          | 800-820-8882          |
| Hong Kong                      | 800-96-5941           |
| Indonesia                      | 001-803-8861-1006     |
| Korea                          | 080-551-2804          |
| Malaysia                       | 1-800-88-3973         |
| Fax                            | +886-2-23788800       |
| Internet/Email/Internet/Email  |                     |
| International/Email/Internet   |                     |
| Domestic                       | email tiasia@ti.com   |
| Internet/Email                 |                     |
| Internet/Email/Internet/Email/ |                     |
| Internet/Email/Internet/Email  |                     |

| Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication. |

| Trademarks: Programmable Active Droop is a trademark of Fairchild Semiconductor. All other trademarks are the property of their respective owners. |

| Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 |

| © 2005 Texas Instruments Incorporated |