Low-cost, minimum-size solution for powering future-generation Celeron™-type processors with peak currents up to 26 A

By Rais Miftakhutdinov, System Engineering, Power Management Products and Philip Rogers, System Engineering, Power Management Products

Introduction

Next-generation microprocessors continue to challenge power system designers by increasing system power consumption. The latest design guidelines from Intel (Reference 4) require a maximum core current of up to 26 A for future processors in a PGA-370 package. The new TPS5211EVM-154 evaluation module with the TPS5211 hysteretic controller has been designed as a low-cost, minimum-size solution for this application. The TPS5211EVM-154 evaluation module includes a synchronous DC-DC buck converter, a socket for a PGA-370 microprocessor package with high-frequency decoupling capacitors, and a load-current transient tester. This module is a high-current modification of the TPS5210EVM-147 that is described in Reference 2. The DC-DC converter has a 5-V input and 1.65-V output and requires a 12-V, 40-mA supply voltage for the controller itself. The DC-DC converter occupies only 3.7 sq. in., while the temperature of the components does not exceed 80°C at room ambient temperature with a load current of 22 A. The transient characteristics of the module have been tested by Voltage Transient Test Tool v.2.0 from Intel and by an internal load-current transient tester at a peak load current of 26 A. A four-layer PCB, which is a very popular solution for a desktop main-board, was used in the module to get electrical and temperature conditions close to real conditions.

TPS5211EVM-154 evaluation module description

The TPS5211EVM-154 evaluation module (5.67″ x 3.19″ x 0.8″) includes three main parts:

• synchronous DC-DC buck converter,

• socket for a PGA-370 package, allowing use of the Transient Test Tool, and

• additional internal transient tester, which can be used if the Transient Test Tool is not available.

The schematic of the DC-DC synchronous buck converter is shown in Figure 1. The input filter includes four

Figure 1. Synchronous DC-DC buck converter schematic

For this application, R5, R6, and R12 are open; and R1 and R3 are 3 Mohm.
10SP470M capacitors (C1–C4), 10-µF ceramic capacitors (C5, C78), and a 1-µH inductor (L1). The input capacitors can handle a total maximum RMS current as high as 18 A to increase the reliability of the power supply. The output filter has four OS-CON type capacitors 4SP560M (C6–C9) and a 1-µH inductor (L2). The fast hysteretic controller and active droop compensation reduce the number of capacitors while having a reliable margin for dynamic tolerance.

The power stage includes two 10-mohm high-side FETs (MTD3302) and two 7-mohm low-side FETs (SUD50N03) in DPAK packages (Q1, Q2, Q3, and Q5). The surface mount heat sinks from AAVID (part number 573100) have been used to improve temperature characteristics. All functions and features of the TPS5211 hysteretic controller are described in References 1–3.

Test results

The simplified block diagram of the test set-up and the EVM itself are shown in Figure 2. All measurements were made at room temperature. The electrical and mechanical characteristics of the DC-DC converter are shown in Table 1.

Table 1. Electrical and mechanical characteristics of the DC-DC converter

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>MEASUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>5 V ± 0.5 V</td>
</tr>
<tr>
<td>Input current</td>
<td>12 A max at $V_{in} = 4.5$ V and $I_{out} = 27.5$ A</td>
</tr>
<tr>
<td>V_{CC} voltage and current</td>
<td>12 V ± 0.6 V, 40 mA max</td>
</tr>
<tr>
<td>Nominal output voltage</td>
<td>1.65 V</td>
</tr>
<tr>
<td>DC and peak output current</td>
<td>22-A DC for temperature measurements and 26-A peak</td>
</tr>
<tr>
<td>Output voltage static tolerance</td>
<td>+0% and –3.65% including droop compensation</td>
</tr>
<tr>
<td>Output voltage dynamic tolerance</td>
<td>+3% and –4.8% at 25-A load-current step with 20-A/µs slew rate</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>120 to 145 kHz</td>
</tr>
<tr>
<td>Efficiency</td>
<td>>84% at 22 A, 53.8% at 0.5 A</td>
</tr>
<tr>
<td>Occupied area</td>
<td>3.7 sq. in.</td>
</tr>
</tbody>
</table>

Continued on next page
Efficiency, power losses and temperature through components

The temperatures of components, the efficiency, and power losses were measured after 2 hours of operation when the temperatures of the PCB and components were stabilized. Results of these measurements are presented in Table 2 and Figure 3. The measurements were made at room temperature (22.8°C) with 5-V input voltage and 22-A load current. The cooling conditions were natural air convection in accordance with the specification. The two surface-mount heat sinks from AAVID (part number 573100) have been used for each pair of high- and low-side FETs to improve temperature characteristics. The maximum temperature rise was 56.7°C through the high-side FET, while the temperature rise of the PCB itself was 28.8°C. These are reasonable values because the real motherboard has a much larger cooling area for the components.

One can see that the temperatures of most components are very close to the PCB temperature, except for the FETs and output inductor.

Efficiency at 22.5-A load current is 83.7% and at 0.5 A is 53.8%. This exceeds the specification, which requires 80% and 40%, respectively. The maximum power losses at 22.5-A load current do not exceed 7.1 W.

The electrical requirements and cooling conditions might vary for different applications. To cover more potential applications, the power losses, efficiency, and temperature through high-side FETs have been investigated for different FETs and switching frequencies with and without heat sinks. Results of this investigation are presented in Table 3.

The switching frequency can be decreased using lower ESR (equivalent series resistance) capacitors like OS-CON type 4SP820M or by changing resistor R14 from 51 ohms to 75 ohms. In this case, the hysteresis window increases proportionally.

Table 2. Temperature measurement results

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>PCB</th>
<th>Q1/05 HIGH-SIDE FETs</th>
<th>Q2/03 LOW-SIDE FETs</th>
<th>L1, INPUT IND.</th>
<th>L2, OUTPUT IND.</th>
<th>U1, IC</th>
<th>INPUT CAPACITORS</th>
<th>OUTPUT CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. (°C)</td>
<td>51.6</td>
<td>78.5/79.5</td>
<td>66.3/70</td>
<td>47</td>
<td>62.3</td>
<td>45</td>
<td>47.8</td>
<td>46.2</td>
</tr>
<tr>
<td>Temp. rise (°C)</td>
<td>28.8</td>
<td>55.7/56.7</td>
<td>43.5/47.2</td>
<td>24.2</td>
<td>39.5</td>
<td>23.2</td>
<td>25</td>
<td>23.4</td>
</tr>
</tbody>
</table>

Table 3. Power losses, efficiency, and high-side FETs temperature for different FETs and frequencies with and without heat sinks.

<table>
<thead>
<tr>
<th>FETs, HIGH-LOW-SIDE</th>
<th>F_sw (kHz)</th>
<th>P_loss (W)</th>
<th>EFF (%)</th>
<th>HEAT SINK (With/Without)</th>
<th>TEMPERATURE OF HIGH-SIDE FETs (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTD3302/SUD50N03-7</td>
<td>130</td>
<td>6.62</td>
<td>84.2</td>
<td>With</td>
<td>With 79.5</td>
</tr>
<tr>
<td>MTD3302/SUD50N03-7</td>
<td>87</td>
<td>6.24</td>
<td>84.9</td>
<td>Without</td>
<td>Without 88</td>
</tr>
<tr>
<td>SUD50N03-7/SUD50N03-7</td>
<td>85</td>
<td>6.32</td>
<td>84.8</td>
<td>Without</td>
<td>Without 89</td>
</tr>
<tr>
<td>PSMN005-25D/PSMN005-25D</td>
<td>88</td>
<td>5.97</td>
<td>85.5</td>
<td>Without</td>
<td>Without 82</td>
</tr>
</tbody>
</table>

Figure 3. Efficiency (a) and power losses (b) over entire input voltage and output current range.
Load-current transient response
The transient tests using the Voltage Transient Test Tool v.2.0 from Intel have been performed in accordance with the corresponding manual from Intel. The output-voltage transient waveforms during the load-current transitions are shown in Figure 4. The Test Tool was connected to the TPS5211EVM-154 evaluation module through the PGA-370 socket. The transient waveforms were measured near the output filter (TP1 on TPS5211EVM-154 module) and through the special test points J5–J7, J6–J8, and J2–J4 of the Test Tool, which are located at the microprocessor side of the PGA-370 connector.

The tests were made under the following conditions in accordance with VRM 8.4 requirements: \(I_{CC} \) bias = 2.15 A, \(I_{CC} \) max = 26 A, slew rate = 22.1 A/µs, transient duty cycle = 0.5, and transient frequency = 5.5 kHz. The peak-to-peak output voltage amplitude is 150 mV in the worst case with four OS-CON capacitors 4SP560M. The specification limit is 210 mV for this test.

Continued on next page

Figure 4. The output-voltage transient response with the Intel Transient Test Tool at transient frequency 5.5 kHz

The cursors show the output voltage limits for this test: 1.52 V minimum and 1.73 V maximum. Ch2 shows the output voltage (50 mV/div.), and Ch1 shows the drain-source voltage (5 V/div.).
Continued from previous page

The output-voltage transient response using the internal load-current transient tester is shown in Figure 5. The load-current transition was between 2.2 A and 27.2 A, which corresponds to a 25-A step load. The peak-to-peak output-voltage amplitude for this test is 130 mV, which is also well below the allowable maximum of 210 mV.

Conclusions

• The TPS5211EVM-154 evaluation module with the TPS5211 hysteretic controller meets the electrical requirements set forth in Reference 4.
• The load-current transient testing using the internal EVM transient tester and the Voltage Transient Test Tool v.2.0 from Intel have shown excellent dynamic characteristics of the TPS5211 hysteretic controller for up to 26-A core current desktop applications with the minimum number of bulk OS-CON capacitors.
• The component temperature measurements in worst-case cooling conditions have given reasonable results.

References

For more information related to this article, you can download an Acrobat Reader file at www-s.ti.com/sc/techlit/litnumber and replace “lit number” with the TI Lit. # for the materials listed below.

<table>
<thead>
<tr>
<th>Document Title</th>
<th>TI Lit. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. “TPS5211 High Frequency Programmable Synchronous Buck Regulator Controller,” September 1999</td>
<td>slvs243</td>
</tr>
</tbody>
</table>

Related Web sites

www.ti.com/sc/docs/products/msp/pwrmgmt/index.htm
www.ti.com/sc/docs/tools/analog/powermanagementdevelopmentboards.html
www.ti.com/sc/docs/products/analog/tps5211.html

Get product data sheets at:

To order the TPS5211EVM-154 (SLVP154) evaluation module, call TI’s toll-free order desk at 1-800-477-8924, ext. 5800, in North America. To order in other regions, contact the TI Product Information Center for your region (see page 32) or contact your local TI distributor.
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
Amplifiers
Data Converters
DSP
Interface
Logic
Power Mgmt
Microcontrollers

Applications
Audio
Automotive
Broadband
Digital control
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless

SAFE HARBOR STATEMENT: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as “TI believes”, “expects”, “anticipates”, “foresees”, “forecasts”, “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks: Celeron is a trademark of Intel Corporation. All other trademarks are the property of their respective owners.

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

© 2005 Texas Instruments Incorporated