Analog Applications Journal

Texas Instruments Incorporated

Power Management

TI TPS5602 for powering TI’s DSP

By Bang S. Lee
Application Specialist, Power Management

The TI TPS5602 (a dual-channel synchronous buck switch-mode power-supply controller) features very fast feedback control and dual channels, and is designed specifically for DSP applications that require fast transient response and high efficiency. By using the hysteretic control method, it is ideal for high-transient current applications such as the C6000 and multiple C54x DSPs. The up and down power sequencing can be achieved by setting the standby pins, since both channels are independent. The wide input voltage and adjustable output voltage make the TPS5602 suitable for many applications.

TPS5602 operating conditions

- VIN range — 4.5 V to 25 V
- VOUT range — 1.2 V to given input voltage
- IOUT range — 14 A per output (the current capability can be extended in multi-phase configuration or if the switching devices are added in parallel)

Key features

- Independent dual channels
- Hysteretic control for fast transient response
- Adjustable output voltage down to 1.2 V
- Minimized external component count
- Synchronous rectifier enables efficiencies of >95%
- Separate standby control and over-current protection
- Low supply current (0.8 mA typ)
- 30-pin TSSOP
- Low standby current (1 µA maximum)
- EVM available (TPS5602EVM-121)
- Driver current 1.2 A at Vcc = 3 V

Figure 1 shows a typical circuit design using the TPS5602 which features a dual-channel synchronous buck converter (1.8-V and 3.3-V outputs). The two output voltages are independent and can be adjustable (1.2 V to approximately input voltage) by using the sampling resistors R1, R2, R3, and R4. The output voltages, \(V_{OUT1} \) and \(V_{OUT2} \), are set with the following equations, where the reference voltage is 1.185 volts.

\[V_{OUT1} = \left(1 + \frac{R3}{R2}\right) V_{REF} \]
\[V_{OUT2} = \left(1 + \frac{R4}{R1}\right) V_{REF} \]

Figure 2 shows the TPS5602’s transient response. The response is less than 2 microseconds after a load is applied. Conventional PWM buck converters exhibit approximately 100 microseconds of response.

Figures 3 and 4 show the efficiency of the two controllers over load up to 5 A. Efficiency can be improved by choosing lower on-resistance MOSFET.

Table 1 shows the setting values of TPS5602 to generate the output voltages 1.8 V, 2.5 V, or 3.3 V.

<table>
<thead>
<tr>
<th>OUTPUT VOLTAGE (V)</th>
<th>R2 (or R1) (Ω)</th>
<th>R3 (or R4) (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>680</td>
<td>1.2K</td>
</tr>
<tr>
<td>2.5</td>
<td>1K</td>
<td>1.1K</td>
</tr>
<tr>
<td>1.8</td>
<td>1.74K</td>
<td>910</td>
</tr>
</tbody>
</table>

Figure 1. Typical circuit design using the TPS5602

Figure 2. Fast load transient response

Figure 3 and 4 show the efficiency of the two controllers over load up to 5 A. Efficiency can be improved by choosing lower on-resistance MOSFET.

Table 1 shows the setting values of TPS5602 to generate the output voltages 1.8 V, 2.5 V, or 3.3 V.

Table 1. Summary of setting values for TPS5602

<table>
<thead>
<tr>
<th>OUTPUT VOLTAGE (V)</th>
<th>R2 (or R1) (Ω)</th>
<th>R3 (or R4) (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>680</td>
<td>1.2K</td>
</tr>
<tr>
<td>2.5</td>
<td>1K</td>
<td>1.1K</td>
</tr>
<tr>
<td>1.8</td>
<td>1.74K</td>
<td>910</td>
</tr>
</tbody>
</table>
The power solutions for TMS320C6xxx and TMS320VC54xx using TPS5602 are shown in Figures 5 and 6.

To avoid bus contention issues within a DSP system, start-up sequencing is recommended. The TMS320C6xxx specifications state that the core and I/O supplies should come up simultaneously, or the core first, followed by the I/O supply. The TMS320VC54xx specifications recommend that the I/O voltage should come up first, or simultaneously. There is a simple solution to meet the power sequencing recommendation. By using the SOFTSTART1 and SOFTSTART2 pins in Figure 1, the start-up sequencing (core voltage first, then peripheral voltage or vice versa) can be easily achieved. The softstart timing can be adjusted by selecting the softstart capacitor value, such as C1 and C12 shown in Figure 1. The equation is

\[C_{\text{soft}} (\mu F) = 2 \times T_{\text{soft}} (\text{ms}), \]

where \(C_{\text{soft}} \) is the softstart capacitance and \(T_{\text{soft}} \) is the start-up time. For example, to set the start-up time \(T_{\text{soft}} = 5 \text{ ms} \), the capacitance value of \(C_{\text{soft}} = 0.01 \ \mu F \) is needed.

In addition, the TPS5602 has two external pins (STBY1, STBY2) that can be alternatively used for power-up sequencing.

Protection diodes D1 and D2 shown in Figure 6 prevent excessive voltage differences (>2 V) between two outputs under any conditions, which is recommended by TMS320VC549/VC5410.

The two power supplies should be placed close to the DSP to minimize the trace resistance and inductance, and to minimize the ground loop current between the two output grounds. This ground loop current can generate radiated EMI noise that can adversely affect any circuitry within the loop. The ground connection must be made directly on the DSP to help minimize the problem.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI or a third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com

Applications
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

TI Worldwide Technical Support

Internet
- TI Semiconductor Product Information Center Home Page support.ti.com
- TI Semiconductor KnowledgeBase Home Page support.ti.com/sc/knowledgebase

Product Information Centers

Americas
- Phone: +1(972) 644-5580
- Internet: support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa
- Phone: +1(972) 644-5580
- Internet: support.ti.com/sc/pic/eurom.htm

Japan
- Phone: +81-3-3344-5317
- Internet: support.ti.com/sc/pic/japan.htm

Asia
- Phone: +886-2-2378-6800
- Internet: support.ti.com/sc/pic/asia.htm

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks: All trademarks are the property of their respective owners.

Mailing Address: Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

© 2005 Texas Instruments Incorporated