Keep an eye on the LVDS input levels

By E.D. Cole, P.E.
Application Engineer, Data Transmission

Introduction to LVDS input levels
Low-voltage differential signaling (LVDS) systems (see Figure 1) run at extremely high data rates. These systems are unusually robust in terms of noise immunity and V_{DC} stability, and provide an easy way to get data between two points very quickly. One of the design parameters for an LVDS system is the level of the signal provided to the input of the LVDS driver. It is important that the high-level and low-level inputs to the LVDS driver be kept balanced (symmetrical) about the threshold voltage where the driver switches the output between states.

Impact of non-symmetrical inputs
It is easy to see the effects of a non-symmetrical input. As shown in Figure 2, the receiver output appears distorted when the inputs are not centered on the V_{THRES} switching level of the driver.

LVDS level specifications
The input levels to a 3.3-V LVDS line driver are specified as 0.0 V to 0.8 V for a logic-0 and 2.0 V to 3.0 V for a logic-1. Input levels between 0.8 V and 2.0 V are undefined, which means that a driver’s switching threshold voltage is also undefined, but it is not hard to determine. By applying a clock signal into the system and adjusting the input levels V_{HI} and V_{IL} while monitoring the receiver output for a 50% duty cycle, the data in Figure 3 is obtained. The values of V_{THRES} shown in Figure 3 are calculated from the V_{HI} and V_{IL} input levels. Note that this can be interpreted as the input sensitivity, not just for the LVDS driver but for the entire LVDS system. The calculated results show a V_{THRES} of approximately 1.35 V_{DC} independent of the data (or clock) rate.

Amplitude and offset
Figure 4 shows the driver output when the input levels are not centered on the input threshold. The Channel 1 waveform (approximately 52% duty cycle) is the driver output when V_{HI} = 2.35 V_{DC} and V_{IL} = 0.35 V, which is closely centered about the 1.35-V threshold. But note the Channel 2 waveform in Figure 4 (approximately 60% duty cycle). This shows the driver output response to an input with V_{HI} = 2.5 V_{DC} and V_{IL} = 0.5 V_{DC}. This is still at a 2.0-Vpp amplitude but is centered at 1.5 V_{DC}. The result is a slight “skew” in the output. The duration of a logic-1 has increased by approximately 640 psec at the expense of the duration (or width) of the logic-0.
When used for clock distribution, this skew is not a problem because the rising and falling edges are clean and stable. High-speed clock signals are rarely perfect square waves with a 50% duty cycle, but when transmitting data (in this example, it would become 200 Mbps) this skew could present a problem. At 200 Mbps, each data bit would be 5 nsec wide, but the results in Figure 4 show the Channel 2 waveform with a 0 bit that is 4.36 ns wide (5.0 ns - 0.64 ns) and a 1 that is 5.64 ns wide (5.0 ns + 0.64 ns). The difference between a 0 and a 1 would be 1.28 ns, with $V_{IH} = 2.5 \, V_{DC}$ and $V_{IL} = 0.5 \, V_{DC}$—well within the specification.

As long as the inputs are centered about the input threshold, the output will maintain the correct duty cycle and bit width. The reader should think of this as an input amplitude and offset. In Figure 5, Channel 1 is the driver output when the input amplitude is 1.5 V_{DC} with an offset of 1.35 V_{DC} ($V_{IH} = 2.1 \, V_{DC}$ and $V_{IL} = 0.6 \, V_{DC}$). Channel 2 is the driver output after the input amplitude has been reduced to 0.5 V_{DC} with no change in the 1.35-V_{DC} offset (now $V_{IH} = 1.85 \, V$ and $V_{IL} = 0.85 \, V$). There is no noticeable difference in propagation delay (through the driver) or shift in duty cycle out of the driver. These inputs levels do not meet the LVDS specification, but work well.

Why does the duty cycle change?
The answer to this question is shown in Figure 6. In Figure 6(A), the input levels are centered above the threshold, which results in an increase in the positive

Figure 4. Effects of non-symmetrical inputs on the output waveform

[Image of waveform showing non-symmetrical inputs and their effect on output]

Figure 5. Output response to different amplitude levels but the same offset voltage

[Image of waveform showing output response to different amplitude levels]

Figure 3. Minimum differential input levels to an LVDS system

[Graph showing minimum differential input levels]

Figure 6. Driver output characteristics vs. input levels

(A) $V_{IH} > V_{THRES}$

(B) $V_{IH} = V_{THRES}$

(C) $V_{IH} < V_{THRES}$
duty cycle. In Figure 6(B), the inputs are centered, which results in a 50%/50% duty cycle. Figure 6(C) shows the input levels centered below the threshold, a condition resulting in a decrease in the positive duty cycle. Figure 6(C) also shows the driver’s response to its input signal. This change in duty cycle for NRZ data streams translates into a difference between the width of 0’s and 1’s.

Threshold adjustment
The threshold cannot be adjusted, but the input levels might be adjustable. The data in Figure 3 shows that even at high signaling rates the input sensitivity to an LVDS driver is approximately 300 mV (and less at slower signaling rates). This means it may be possible to adjust the input signal by installing a resistor divider at the driver input.

The author simulated a 100-MHz clock distribution system with $V_{IH} = 3.5$ V and $V_{IL} = 0.5$ VDC (amplitude = 3.0 V, offset = 2.0 VDC) to the driver. To bring the offset voltage down near the driver’s threshold voltage, the resistor divider network shown in Figure 7 was installed.

This divider reduces the offset from 2.0 V to 1.4 V, very near the threshold voltage of the driver. It also reduces the input amplitude by 30%, making $V_{IH} = 2.46$ VDC and $V_{IL} = 0.35$ VDC.

Performance of this modified input was compared to another driving having the standard 50-ohm input termination. The results are shown in Figure 8. Notice that the Channel 1 waveform is very symmetrical with a very good duty cycle. The Channel 2 waveform has an offset voltage of 2.0 VDC, and produces the increased (57%) positive duty cycle expected.

Data transmission
What happens when the driver is sending data? A shift in duty cycle is the same as a “skew” in the width of data bits—1’s and 0’s will not be the same width. This can be seen using eye patterns to view the serial data stream. Figure 8 shows how, using two clock inputs, the resistor divider can be used to center the offset level. By changing these inputs from “clocks” to random data (NRZ formatted) the serial data stream using eye patterns can be viewed. The input levels have not been changed.

The Channel 1 trace contains the eye pattern for the adjusted signal. The divider has aligned the input very near the switching threshold of the LVDS driver, and the output has the familiar “X” at the crossovers indicating the system is switching 1’s to 0’s and 0’s to 1’s at the same time. In other words, each bit is the same width.

The Channel 2 trace is the eye pattern for the unadjusted signal. These input levels resulted in the 57% duty cycle waveform shown in Figure 8, and after the format is changed to “data” the corresponding eye pattern shows that the data bits are not the same width. The falling edges are outside the rising edges, so the 1’s are wider than the 0’s.

Conclusion
In any transmission system, the input levels to the driver are one of many factors that will influence the quality of the signal out of the line receiver. This is true for any line driver, RS-422, LVDS, SCSI, etc. Keep in mind that the distortion evident in the Channel 2 waveform as shown in Figure 9 can be caused by several factors, and in some cases may not even be related to driver input levels. Also, remember that the Channel 2 waveform is the result of input levels ($V_{VIH} = 3.5$ V) that are not even within specified limits.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications	Support TI.com	Trademarks: All trademarks are the property of their respective owners.
-------------------	--------------------	------------------	© 2005 Texas Instruments Incorporated
Amplifiers	Audio	amplifier.ti.com	Mailing Address: Texas Instruments
Data Converters	Automotive	dataconverter.ti.com	Post Office Box 655303
DSP	Broadband	dsp.ti.com	Dallas, Texas 75265
Interface	Digital control	interface.ti.com	© 2005 Texas Instruments Incorporated
Logic	Military	logic.ti.com	SLYT188
Power Mgmt	Optical Networking	power.ti.com	
Microcontrollers	Security	microcontroller.ti.com	
	Telephony	www.ti.com/audio	
	Video & Imaging	www.ti.com/automotive	
	Wireless	www.ti.com/broadband	
		www.ti.com/digitalcontrol	
		www.ti.com/military	
		www.ti.com/opticalnetwork	
		www.ti.com/security	
		www.ti.com/telephony	
		www.ti.com/video	
		www.ti.com/wireless	

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.