Evaluating operational amplifiers as input amplifiers for A-to-D converters

By James Karki
Application Specialist, Operational Amplifiers

This application note describes a method for comparing the ac performance of the TI TLV2462 and TLV2772 operational amplifiers to the TI TLV2544/TLV2548 analog-to-digital converter. Amplifiers like the TLV2462 and TLV2772 are used to condition the signal input to ADCs (TLV2544/TLV2548). Normally the functions performed include level shifting, impedance matching and amplification. The drive amplifier is the link between the input source and the ADC.

When selecting an amplifier, ac performance factors such as bandwidth, slew rate, noise and distortion drive the decision-making process with dc errors considered secondarily. One of the difficulties that arises during amplifier selection is that op amps are not normally specified in the same manner as ADCs. ENOB (effective number of bits) is a key ac parameter used for ADCs. It is calculated based on SINAD (signal to noise + distortion) in dB, where

\[\text{ENOB} = \frac{\text{SINAD} - 1.76}{6.02} \]

By measuring the THD+N (total distortion + noise) in dB of the TLV2462 and TLV2772 in different circuit topologies and substituting THD+N for SINAD when calculating ENOB, the amplifier’s performance is directly comparable to the TLV2544/TLV2548 ADC.

Test circuits

The input to the TLV2544/TLV2548 ADC is modeled as shown in Figure 1. During sampling the input is active and appears as a series resistor and shunt capacitor. Typical values are 1 kΩ and 60 pF. When not sampling, the input impedance of the ADC is high.

Figure 2 shows the non-inverting, inverting and differential amplifier circuits that are tested. A 1-kΩ resistor in series with a 68-pF capacitor is placed on the output of each amplifier to simulate the input of the ADC. The value of resistive components, R, is varied between 1 kΩ.

Continued on next page
Continued from previous page

10 kΩ and 100 kΩ to measure their effect on the ENOB performance. Note that in the TLV2772 non-inverting circuit with 10-kΩ and 100-kΩ resistor values, a small capacitor is required in the feedback circuit for stability due to the capacitance of the cabling and measuring instrument. Note also that R = 0 Ω is tested for the non-inverting amplifiers. Compare the test results from the TLV2462 in Figures 3 and 4 with the TLV2772 in Figures 5 and 6.

An Audio Precision model 2322 – System Two is used to measure the THD+N of the amplifier circuits. The analog test signal is a sine wave that is swept from 10 Hz to 200 kHz. The measurement bandwidth is 10 Hz to 500 kHz.

It is assumed that the amplifier is operated at the same voltage as the ADC—3.3 V or 5 V. Typically, the amplifier is biased so that with zero input the output is at half the full-scale voltage of the ADC. To simplify testing, the amplifiers use supply voltages of ±1.65 V to simulate a 3.3-V system and ±2.5 V to simulate a 5-V system. The input signal is referenced to ground with peak levels of 0.89 V and 1.78 V. These are equivalent to −1-dB levels in 2-V and 4-V full-scale systems.

Test results

Calculating

$$ENOB = \frac{(THD + N) - 1.76}{6.02}.$$

Figures 3 to 6 show the results of testing the ENOB with the TLV2544/TLV2548 ADC shown for comparison.

Conclusion

The data shows the TLV2462 and TLV2772 inverting and differential amplifier topologies with resistive elements of R=10 kΩ result in the best amplifier performance. This result may appear surprising at first since the noise gain of the inverting amplifier is twice that of the non-inverting amplifier. The larger values of measured THD+N in the non-inverting mode stem from the fact that the input bias point is made to move through most of its common mode voltage range resulting in larger distortion products, with noise being less dominant. The input bias point of the differential amplifier is also made to change, but only one quarter as much. In the inverting topology, the input remains biased midway between the power supply rails. This optimizes distortion performance.
Figure 4. The TLV2462 at 5 V

Figure 5. The TLV2772 at 3.3 V

Figure 6. The TLV2772 at 5 V
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com

Applications
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless