Matching the noise performance of the operational amplifier to the ADC

By Bonnie C. Baker (Email: bonnie@ti.com)
Senior Applications Engineer

Proper selection of the operational amplifier that drives an analog-to-digital converter (ADC) in a mixed-signal application is critical. The designer must compare issues such as amplifier noise, bandwidth, settling time, and slew rate to the ADC's signal-to-noise ratio (SNR), spurious-free dynamic range (SFDR), input impedance, and sampling time. This article specifically addresses the matching of the noise specifications and performance of an op amp and a successive approximation register (SAR) ADC in a single-supply environment.

The noise that the amplifier generates originates from the input differential stage. The input stage of every amplifier generates transistor-device noise, which spot-noise graphs describe as referred-to-input (RTI) noise. With this graphical information we can determine how much noise reaches the input terminal of the ADC by calculating the referred-to-output (RTO) amplifier noise.

This discussion begins with a description of the amplifier's device noise. The amplifier noise sources are then tied together into one figure of merit, and the units are converted from volts to an SNR in decibels. Finally, the impact of the op amp in this mixed-signal circuit (Figure 1) is determined by calculating the combination of the op amp SNR value with the ADC's SNR performance.

Characteristics of the amplifier noise

It is important to understand the noise that the operational amplifier generates in this application. The typical performance of the amplifier given in its product datasheet shows that the op amp noise behavior over frequency has a signature that is unmistakable (see Figure 2). In this article, since we will consider the effects of using a single-supply CMOS amplifier, the input current noise is low enough that we can ignore it. Here we will consider only the effects of the amplifier's voltage noise.

The amplifier noise specification in the typical amplifier datasheet is an RTI specification. We can model the amplifier noise as a voltage source at the non-inverting input of the amplifier. The electrical characteristics table of an operational amplifier gives the input voltage noise...
Input voltage noise density calls out a noise figure that refers to one frequency. For instance, the electrical characteristics table in Figure 2 shows that the input voltage noise density (e_{\text{nd}}) at 10 kHz is equal to 17 nV/\sqrt{Hz}. Usually this specification appears in the broadband-noise portion of the frequency plot (Figure 2). Theoretically, this broadband noise is flat. Assuming that it is flat is a good estimate of the amplifier’s behavior. The resistors inside the operational amplifier primarily generate the broadband noise whether they are diffused resistors or the source and drain of the transistors.

The amplifier datasheet contains a typical specification graph that shows the input voltage noise density versus frequency. Figure 2 is an example of this type of graph. In this example, the input voltage noise specification is equal to the area beneath the input-voltage, noise-density curve between the specified frequencies of 0.1 and 10 Hz. Note that the units for this specification are peak-to-peak. To convert this to an rms value, simply divide the peak-to-peak value by 6.6 (industry-standard crest factor [CF] = 3.3).

Table 1 contains typical CF values used to convert rms to peak-to-peak values (and vice versa). To estimate the peak-to-peak operational amplifier output noise voltage, multiply the rms output voltage by 2 \times \text{CF}. To estimate the ADC peak-to-peak output bit performance, subtract the bit crest factor (BCF) from the rms specification.

Table 1. Crest factor and bit crest factor values used for conversions from rms to peak-to-peak

<table>
<thead>
<tr>
<th>CF (V)</th>
<th>BCF (Bits)</th>
<th>PEAK-TO-PEAK (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>2.38</td>
<td>99</td>
</tr>
<tr>
<td>3.3*</td>
<td>2.72</td>
<td>99.9</td>
</tr>
<tr>
<td>3.9</td>
<td>2.96</td>
<td>99.99</td>
</tr>
<tr>
<td>4.4</td>
<td>3.14</td>
<td>99.999</td>
</tr>
<tr>
<td>4.9</td>
<td>3.29</td>
<td>99.9999</td>
</tr>
</tbody>
</table>

*Industry standard
We can easily calculate the noise underneath the curve in Figure 2 for different input voltage noise bandwidths in the 1/f region. The first order of business in this calculation is to determine the input noise density at 1 Hz. Once we find that value, the following simple formula will provide the rms noise under the curve.

\[
V_{(1/f): f_1-f_2} = C \sqrt{\ln \left(\frac{f_2}{f_1} \right)},
\]

where \(C \) is equal to the input noise density at 1 Hz.

As an example, the amount of rms noise produced by the amplifier shown in Figure 2 from 0.1 Hz to 6000 Hz is:

\[
V_{(1/f): f_1-f_2} = C \sqrt{\ln \left(\frac{6000}{0.1} \right)}, \quad \text{and}
\]

\[V_{(1/f): f_1-f_2} = 700 \text{nV} \sqrt{\ln \left(\frac{6000}{0.1} \right)}, \quad \text{and}
\]

\[V_{(1/f): f_1-f_2} = 2.32 \text{\mu Vrms}.
\]

With this calculation, and with the amplifier noise gain \(G = 1 \), the SNR at the output of the amplifier for the 1/f noise is:

\[\text{SNR}_{\text{OPA}} = 20 \log_{10} \left(\frac{V_{\text{OUT-rms}}}{G \times V_{(1/f): f_1-f_2}} \right),\]

\[\text{SNR}_{\text{OPA}} = 20 \log_{10} \left(\frac{5}{2 \sqrt{2}} \right) = 117.6 \text{dB},\]

10 kHz, the noise from the amplifier across the bandwidth of 6 kHz to 100 kHz is:

\[V_{1-100 \text{kHz}} = (\text{Noise Density at } 10 \text{ kHz}) \sqrt{\text{BW}},\]

\[V_{1-100 \text{kHz}} = e_{\text{nd}} \sqrt{\text{BW}},\]

\[V_{1-100 \text{kHz}} = (17 \text{ nV/Hz}) \sqrt{10^{-5}}, \quad \text{and}
\]

\[V_{1-100 \text{kHz}} = 5.21 \text{\mu Vrms},\]

where \(\text{BW} \) is equal to the bandwidth of interest.

So how do we get from the manufacturer’s graph to an RTO noise value? We calculate the area beneath the noise curve and multiply that times the noise gain of the amplifier. In this example, the noise gain of our circuit is +1 V/V. We determine the noise that the amplifier contributes in both regions and then add the two values together using the square root of the sum of the squares. Figure 3 shows the formula for this calculation and illustrates the two regions.

Figure 3 separates the noise into two parts. In region \(e_1 \), we gain the 1/f noise of the amplifier by the dc gain of the amplifier circuit, which is +1 V/V. The specifications for amplifier noise are in nanovolts per square root of hertz. So the analysis is complete when we multiply the average noise over the region by the square root of the bandwidth of that region. For CMOS amplifiers, the 1/f region is usually from 0.1 Hz to 100 Hz up to 1000 Hz. Since this noise value is multiplied by the square root of the bandwidth, its
contribution is low. In region e2, the broadband noise of the amplifier is multiplied by the amplifier circuit gain, which is again +1 V/V, and the square root of the bandwidth.

Each region contributes to the overall circuit noise:

\[
e_1 = C \ln \frac{f_b}{f_a} = 2.32 \text{ µVrms}
\]

\[
e_2 = e_n \sqrt{f_2 - f_1} = 5.21 \text{ µVrms}
\]

The total noise at the output of the amplifier is:

\[
V_{N(Amp-RTO)} = \sqrt{e_1^2 + e_2^2} = 5.70 \text{ µVrms}.
\]

With this calculation, the SNR at the output of the amplifier for the 1/f noise is:

\[
\text{SNR}_{\text{OPA}} = 20 \log_{10} \left(\frac{V_{\text{OUT-rms}}}{V_{N(\text{Ampl-RTO})}} \right),
\]

\[
\text{SNR}_{\text{OPA}} = 20 \log_{10} \left(\frac{5 \text{ V}}{2\sqrt{2} \times 5.70 \text{ µV}} \right), \text{ and}
\]

\[
\text{SNR}_{\text{OPA}} = 109.8 \text{ dB}.
\]

We can validate this noise calculation using the Texas Instruments (TI) SPICE simulation tool, TINA-TI™. This tool can be found at amplifier.ti.com under “Engineering Resources.”

The two graphs in Figure 4 demonstrate how TINA-TI can help us understand the noise in our circuit. Figure 4(a) shows the simulated noise response of an amplifier. Figure 4(b) provides the cumulative noise as frequency increases. Notice that the noise is very low at the lower frequencies in Figure 4(b). This is because the lower bandwidths are multiplied by the square root of a small number, the bandwidth. As frequency increases, the cumulative noise also increases. One would think that at higher frequencies the increases in noise would be less because of the characteristics of Figure 4(a). As we can see, this is not true, because the bandwidth multiplier (square root of the bandwidth) is larger at higher frequencies.

Combining the op amp and ADC noise figures

Once we examine the amplifier for possible noise sources, it is easy to evaluate the total noise of the system in Figure 1. This system uses the 16-bit ADC, ADS8325, whose maximum sample rate is 100 ksps. The typical SNR of this device is 91 dB.

As we found before, the OPA363 RTO noise is 109.8 dB. Now we can determine the total noise of the system by using the op amp SNR and ADC SNR, and applying the theorem of taking the square root of the sum of the squares.

\[
\text{SNR}_{\text{Total}} = -20 \log_{10} \sqrt{10^{-90 \text{ dB}} + 10^{-90 \text{ dB}}}
\]

\[
\text{SNR}_{\text{Total}} = 90.94 \text{ dB}
\]

From this calculation we can see that the amplifier noise has very little impact on the resolution of the system.
With the devices in the circuit, the SNR performance will always be equal to or less than the lowest value. Given this interaction between the amplifier and ADC, picking a higher-noise amplifier will give the worst results. For instance, if we use an amplifier in a gain of 10 V/V that has a typical voltage noise specification of $e_{nV} = 45 \text{nV/Hz}$ at 10 kHz, then $\text{SNR}_{\text{total}}$ is 82.2 dB. If we use the 16-bit ADS8325, then $\text{SNR}_{\text{total}}$ is 81.6 dB. In this example, the amplifier is dominating the noise of the circuit.

There are more factors that have an effect on the amplifier selection process, but amplifier noise can have a significant effect on the digital code outcome. If the amplifier is too noisy, the ADC will reliably convert the noise from the amplifier circuit to the digital output. On the other hand, it is possible to have an ADC that is noisier than the amplifier circuit. If we choose an extremely low-noise amplifier without evaluating the system, we will probably spend too much money on one component or the other. Determining the potential noise in a circuit is always a daunting challenge, but there are some general rules of thumb that can be applied to overcome these problems. We can use the circuit’s frequency range to our advantage in the calculations; and, when we combine noise sources, we can use the equation for the square root of the sum of the squares. By using these tricks we can quickly determine the compatibility of our amplifier/ADC combination.

In this circuit an amplifier isolates impedances in the signal chain. Other features, like gain or filtering, can be added; but regardless of the features we put around the amplifier, we should always ensure that the amplifier circuit preserves the integrity of the ADC.

References
For more information related to this article, you can download an Acrobat Reader file at www-s.ti.com/sc/techlit/litnumber and replace “litnumber” with the TI Lit. # for the materials listed below.

Document Title	TI Lit. #
1. “1.8V, 7MHz, 90dB CMRR, Single-Supply, Rail-to-Rail I/O Operational Amplifier,” OPA363/2363, OPA364/2364, OPA4364 Datasheet | sbos259

Related Web sites
- dataconverter.ti.com
- www.ti.com/sc/device/ADS8325
- www.ti.com/sc/device/OPA363

For more information on TI’s SPICE simulation tool, TINA-TI, and TI’s FilterPro™ Active Filter Design software, please visit amplifier.ti.com.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Management: power.ti.com
- Microcontrollers: microcontroller.ti.com

Applications
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

Internet
- TI Semiconductor Product Information Center Home Page: support.ti.com
- TI Semiconductor KnowledgeBase Home Page: support.ti.com/sc/knowledgebase

Product Information Centers
- Americas
 - Phone: +1(972) 644-5580
 - Fax: +1(972) 927-6377
 - Internet: support.ti.com/sc/pic/america.htm
- Europe, Middle East, and Africa
 - Phone: +32 (0) 27 45 54 32
 - Netherlands (English): +31 (0) 546 67 95 45
 - France: +33 (0) 1 30 70 11 84
 - Spain: +34 902 35 40 28
 - Germany: +49 (0) 8161 80 33 11
 - Sweden (English): +46 (0) 8587 555 22
 - Italy: 800 79 11 37
 - Fax: +39 (0) 8161 80 2045
 - Internet: support.ti.com/sc/pic/euro.htm
- Japan
 - Phone: +81-3-3344-5317
 - Domestic: 0120-81-0036
 - Internet: support.ti.com/sc/pic/japan.htm
 - Domestic: www.ti.co.jp/pic
- Asia
 - Phone: +886-2-23788800
 - Toll-Free Number: Toll-Free Number
 - Australia: 1-800-999-084
 - Malaysia: 1-800-80-3973
 - China: 800-820-8882
 - New Zealand: 0800-446-954
 - Hong Kong: 800-96-5941
 - Philippines: 1-800-765-7404
 - India: +91-80-51381665 (Toll)
 - Singapore: 800-888-1028
 - Indonesia: 001-803-8661-1006
 - Taiwan: 800-006800
 - Korea: 080-551-2804
 - Thailand: 01-800-866-0010
 - Fax: +886-2-23789999
 - Internet: support.ti.com/sc/pic/asia.htm
 - Email: taiasia@ti.com

C120905

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as “TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases occurring after the date of this publication.

Trademarks: FilterPro and TINA-TI are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

Mailing Address: Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

© 2006 Texas Instruments Incorporated