Analog Applications Journal

Clamp function of high-speed ADC THS1041

By Hui-Qing Liu (Email: liu_hui-qing@ti.com)
Applications Engineer, High-Speed ADC

Introduction
The THS1041 from Texas Instruments (TI) is a 10-bit, 40-MSPS, CMOS high-speed analog-to-digital converter (ADC). It has many good features, including a single 3-V supply, low power, a flexible input configuration, a built-in programmable gain amplifier (PGA), and a built-in clamp function. Because of these features, especially the built-in clamp function, the THS1041 has been used in various applications for many years. The clamp function enables the device to generate and output a buffered dc voltage for flexible ADC applications—for example, to provide a common-mode voltage for the ADC or to allow dc restoration on an ac-coupled video signal at the ADC analog input. This function can be enabled or disabled. As shown in Figure 1, the THS1041 clamp function consists of an on-chip digital-to-analog converter (DAC), logic control, a clamp input, a buffer, and a clamp output. The clamp output can be a continuous or interrupted dc signal depending on whether its Clamp pin receives a dc or pulse signal from an external source. When this interrupted dc signal is applied to the ADC single-ended (SE) input circuit to provide common-mode voltage, the dc stability at the ADC analog input becomes a concern. Some users have questioned dc stability when the clamp function and SE input configuration are applied at the same time. This article presents some test data that explains how the dc voltage behaves in this kind of application condition and how to get the best ADC performance when the clamp function is on.

Clamp function
Figure 1 shows that the THS1041 clamp function is implemented by setting four pins—Clampin, Clampout, Clamp, and Mode—as well as the device internal registers. With on-chip DAC, digital data from the THS1041 internal register written by data bus b0 to b9 can be converted into an analog dc voltage. This dc voltage is then buffered and output to Clampout through internal switches. The internal switch between the buffer and DAC can be on or off depending on how the register is set. The DAC can provide different dc voltages with a range between reference voltages REF+ and REF− for different application needs. Setting different voltage levels at the Mode pin permits the input of the internal buffer to also simply be connected to an internal fixed dc voltage or to Clampin for an external dc voltage input. The Clampout pin can be connected to or disconnected from the buffer output of the clamp function by controlling either the dc or the pulse signal on the Clamp pin. The THS1041 clamp function can be on with an ADC differential input or SE input configuration. Its output from Clampout can be connected to both analog inputs, AIN+ and AIN−, to provide common-mode voltage, or to only one of them for other applications.

Figure 1. THS1041 clamp function block diagram

![THS1041 clamp function block diagram](image-url)
Figure 2 shows a fundamental configuration of the THS1041 with the clamp function at the SE input. Setting Mode as \(AV_{DD}/2 \) puts the device in an internal reference mode; and dc voltage at Clampout is from Clampin, not an internal DAC. The output of the clamp function, Clampout, is connected to AIN+ and also to a capacitor C2 through a small resistor R for a clamp pulse control application. Capacitor C2 is used to hold dc voltage when Clampout is disconnected internally during the clamp pulse interval. It is also used to couple ac signals from the source to AIN+. Another ADC analog input, AIN–, is connected to an external dc source and should have the same dc voltage as AIN+ for normal operation. The Clamp pin controls the internal switch between Clampout and the buffer output. When Clamp is logic high, Clampout is internally connected to the buffer output; and when Clamp is logic low, Clampout is disconnected from the buffer output.

Testing dc behavior with clamp dc control

Clamp dc control means adding a dc signal at the Clamp pin to control the Clampout pin’s access to the internal buffer. To see dc behavior at AIN+ and AIN– when the clamp function is on, two different dc voltages are added to AIN+ and AIN–, and the logic level at Clamp is controlled manually. Based on the configuration in Figure 2, V2 is set at 1.5 V at Clampin, V1 is set at 1 V at AIN–, C2 is 0.6 \(\mu \)F, and R is 10 \(\Omega \). No ac signal is added to analog input AIN+ in this case. The ADC clock is running at 40 MHz. When Clamp is manually set to logic high (3 VDC), the AIN+ is stable at 1.5 V; and when Clamp is set to logic low (0 VDC), the AIN+ is stable at 1 V. In other words, when the Clamp pin is logic high, the voltage at AIN+ is driven by an internal buffer; and when the Clamp pin is logic low, AIN+ is disconnected from the buffer and its voltage drifts toward the voltage at AIN–. On the other hand, if AIN– is floating, then the voltage at AIN– follows the voltage at AIN+. The dc voltages at AIN+ and AIN– drift toward each other after their voltage sources are disconnected. This is because significant charge or discharge occurs internally between the sampling capacitors in the ADC’s sample-and-hold circuit during the hold phases after many clock cycles. The test data is shown in Tables 1 and 2.

The test data in Tables 1 and 2, measured when the ADC clock was active, shows that disconnecting the analog input pins from the source makes their dc voltages affect each other. When the ADC clock is not running, the dc voltages at AIN+ and AIN– drift toward each other because significant charge or discharge occurs internally between the sampling capacitors in the ADC’s sample-and-hold circuit during the hold phases after many clock cycles. The test data is shown in Tables 1 and 2.

Table 1. Analog input dc voltage when clock is active and AIN– is connected to dc supply

<table>
<thead>
<tr>
<th>Clamp Logic</th>
<th>Clampin (connected to dc supply) (V)</th>
<th>AIN– (connected to dc supply) (V)</th>
<th>AIN+ (charged or discharged based on Clamp logic) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>High</td>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Low</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Analog input dc voltage when clock is active and AIN– is floating

<table>
<thead>
<tr>
<th>Clamp Logic</th>
<th>Clampin (connected to dc supply) (V)</th>
<th>AIN– (charged or discharged) (V)</th>
<th>AIN+ (charged or discharged based on Clamp logic) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Low</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
voltages at AIN+ and AIN– don’t affect each other (see Tables 3 and 4). In addition, whether or not capacitor C2 is used does not affect the dc voltage test result but does affect the transition time of the voltage change at AIN+.

Table 3. Analog input dc voltage when clock is not active

<table>
<thead>
<tr>
<th>Clamp Logic</th>
<th>Clampin (connected to dc supply) (V)</th>
<th>AIN– (connected to dc supply) (V)</th>
<th>AIN+ (charged or discharged based on Clamp logic) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Low</td>
<td>1.5</td>
<td>1</td>
<td>0*</td>
</tr>
</tbody>
</table>

*Discharge slowly

Table 4. Analog input dc voltage when clock is not active and AIN– is floating

<table>
<thead>
<tr>
<th>Clamp Logic</th>
<th>Clampin (connected to dc supply) (V)</th>
<th>AIN– (charged or discharged) (V)</th>
<th>AIN+ (charged or discharged) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>1.5</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>Low</td>
<td>1.5</td>
<td>0</td>
<td>0*</td>
</tr>
</tbody>
</table>

*Discharge slowly

Testing dc behavior with clamp pulse control

Clamp pulse control means adding a pulse signal at the Clamp pin to control the Clampout pin’s access to the internal buffer. To observe dc behavior at the THS1041 analog input, a pulse signal instead of a dc signal is added to the Clamp pin with a frequency of 16 kHz and a duty cycle of 6% (see Figure 2). Similar to the previous test, a fixed dc voltage of 1 V from a well decoupled supply is added to Clampin, and a variable dc voltage is added to AIN–. In this case, AIN+ is driven to 1 V by the internal buffer during the clamp pulse and is well maintained at that level by capacitor C2 during the clamp pulse interval when AIN– is 1 V. The capacitance C2 must be large enough and the clamp pulse interval short enough to keep the dc voltage at AIN+ the same level as the dc voltage at Clampin. However, the dc signal will be distorted if the dc offset at AIN– is set differently from AIN+. As mentioned earlier, the dc voltages at the analog input pins can drift when one pin or the other is floating. The test with clamp pulse control further proves this statement. The dc drift appears as a voltage spike when a pulse is applied to the Clamp pin, and this is observed by oscilloscope as shown in Figure 3.

The spike periodically appears at AIN+ at clamp pulse frequency, and its amplitude increases as the dc voltage difference between the analog input pins increases. The test data shows that when Clampin is connected to a 1-V supply and AIN– is connected to a 0.5-V supply, the dc measurement at AIN+ is 1 V during the clamp pulse logic high and low. The ac measurement at AIN+ is a positive spike at about 20 mV and appears when the clamp pulse transitions from low to high. When AIN– is connected to a 1.5-V supply and Clampin is still connected to a 1-V supply, the dc measurement at AIN+ is 1 V. The ac measurement at AIN+ is a negative spike at about 30 mV and appears when the clamp pulse transitions from low to high. When AIN– is connected to a 1-V supply, the same as the dc voltage at AIN+, the spike disappears and the 1-V dc voltage at AIN+ is smooth and stable.

Further testing shows that the spike gets smaller when the duty cycle of the clamp pulse goes higher. Adding a capacitor C3 at the Clampout pin will significantly limit the spike.

THS1041 ac performance with clamp pulse control

The spike at analog input AIN+ can degrade the ac performance of the THS1041 (see Figures 4 and 5 and Table 5). Figures 4 and 5 are FFT plots of the THS1041 with clamp pulse control and different dc voltage conditions on the analog input pins. The FFT plots are generated from a Labview FFT program based on the data captured from the THS1041 EVM by an HP1600 logic analyzer. The test signal at the analog input of the EVM is a 2.2-MHz sine wave with an amplitude of –20 dBFS (20 dB below the ADC’s full scale). It is generated from an HP8644 sine-wave generator and received by the SE input of the THS1041 through an onboard transformer. (Detailed settings of the EVM board for this test are described later in this article.) A pulse generator triggered by the HP8644 is running the THS1041 input clock at 40 MHz. The clamp pulse is generated from a pulse generator with a frequency of 15.6 kHz and a 50% duty cycle.

In frequency domain the spike appears periodically at clamp pulse frequency as shown in Figure 3. In frequency domain the spike appears at 15.6 kHz (the low end of the frequency axis) on the FFT. When the dc voltage difference at the analog input pins is 0.5 V (AIN+ is 1 V and AIN– is 0.5 V), the spike at 15.6 kHz is –67 dBFS, the largest spike in the
FFT (see Figure 4). This spike is much higher than any harmonic on the FFT and contributes to the spurious-free dynamic range (SFDR) with a low value. When the dc voltage difference is zero (AIN+ and AIN− are 1 V), the spike at the same frequency is –82 dBFS, a 15-dB improvement (see Figure 5). This spike is lower than the second and third harmonics and lower than the total harmonic distortion (THD).

Figures 4 and 5 show that with the dc voltage difference between AIN+ and AIN− increasing to a certain degree, the SFDR decreases and could be significantly worse than the THD if the input analog signal was small. This would
be especially true if the decoupling capacitance C3 at
Clampout (see Figure 2) was not large enough. Based on
these test results, a further test was conducted with a
different decoupling capacitance at Clampout. With an
analog input amplitude of –21 dBFS (21 dB below the 2-V
full-scale input of the THS1041), a C3 value of 0.4 µF, and
a dc voltage difference between AIN+ and AIN– of 0.5 V,
the SFDR is about 16 dB worse than the THD. At the
same value of C3, the SFDR is 3 dB worse than the THD
when the dc voltage difference between AIN+ and AIN– is
decreased to 0 V. If C3 is increased to 1.4 µF, the overall
ac performance—including the SFDR, THD, and signal-to-
noise ratio (SNR)—improves significantly. In this case
the SFDR is about 5 dB better than the THD when the dc
input amplitude between AIN+ and AIN– is zero, and about
6 dB worse than the THD when the dc voltage difference
is 0.5 V. The test data is shown in Table 5.

<table>
<thead>
<tr>
<th>AIN+ (V)</th>
<th>AIN– (V)</th>
<th>SFDR Relative to THD (C3 = 0.4 µF) (dB)</th>
<th>SFDR Relative to THD (C3 = 1.4 µF) (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>–16</td>
<td>–6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>–3</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>–17</td>
<td>–5</td>
</tr>
</tbody>
</table>

The test data shows that the dc voltage differences
between AIN+ and AIN– cause not only a spike at the
analog input but also early output saturation, therefore
decreasing the maximum analog input amplitude. For
example, when the dc voltage difference between AIN+
and AIN– is 0.5 V with AIN+ at 1 V, the maximum analog
input amplitude has to be 20 dB below full scale to avoid
output saturation. When the dc voltage difference is 0.3 V
with AIN+ at 1 V, the maximum analog input amplitude is
3.5 dB below full scale. So the dc voltage at AIN+ and
AIN– should be the same as the dc voltage at AIN+ with an SE
input configuration. Adding different dc voltages to AIN+
and AIN– can cause a spike at the analog input when the
clamp function is on and a pulse signal is applied to Clamp.
The higher the dc voltage difference between analog inputs
AIN+ and AIN–, the larger the spike. The spike also gets
worse if the duty cycle of the clamp pulse is decreased.
This is because the dc voltages at AIN+ and AIN– drift
toward each other after their external voltage sources are
disconnected. In this case the charge or discharge occurs
internally between the sampling capacitors in the ADC’s
sample-and-hold circuit during the hold phases. The dc
input amplitude between AIN+ and AIN– also causes
early output saturation and degrades the maximum analog
input amplitude, so the difference should be limited.
Increasing decoupling capacitance at Clampout will mini-
nize the spike, increase dc voltage difference tolerance at
the analog input, and improve overall THS1041 ac perfor-
mane. This conclusion is based on the THS1041 bench test.
The observation and test method in this article are also
helpful for other high-speed ADCs.

References
For more information related to this article, you can down-
load an Acrobat Reader file at www-s.ti.com/sc/techlit/
litnumber and replace “litnumber” with the TI Lit. # for
the materials listed below.

Document Title TI Lit. #
1. “10-Bit, 40-MSPS Analog-to-Digital Converter
with PGA and Clamp,” THS1041 Datasheet slas289
2. “THS1040/41 Evaluation Module for the
THS1040/THS1041 10-Bit ADC,” User’s Guide slau079

Related Web sites
www.ti.com/sc/device/THS1041
www.ti.com/sc/device/THS1040
www.dataconverter.ti.com
www.ti.com/sc/device/THS1041
www.ti.com/sc/device/THS1040
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third parties, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI products or services beyond the parameters stated by TI.

TI reserves the right to make changes without further notice to any products herein. TI makes no representation that the operation of these products would not violate patent or other industrial or intellectual property rights of TI or others.

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These forward-looking statements are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Interface: interfacedata.ti.com
- Logic: logic.ti.com
- Power Management: power.ti.com
- Microcontrollers: microcontroller.ti.com
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

© 2006 Texas Instruments Incorporated