bq25012 single-chip, Li-ion charger and dc/dc converter for Bluetooth® headsets

By Lingyin Zhao (Email: lzhao@ti.com)
Application Engineer, Portable Power Management

Introduction
Highly integrated charger and dc/dc converter ICs have become more and more desirable as portable power management technology continues to advance. These ICs not only support size reduction of portable devices but also incorporate more functionality and enhance performance in diagnostics, monitoring, control, and protection.

As an example, a typical Bluetooth headset needs a rechargeable battery (and thus a battery charger) and a 1.8-V dc/dc converter to power the core chip. With small size, light weight, and low cost being the major concerns, the bq25012 is an ideal solution for this application. A single-chip 3.5 × 4.5-mm QFN package incorporates a linear charger with dual inputs for both the ac adapter and the USB, and a dc/dc converter with integrated FETs saves board space and reduces system design time. Figure 1 shows a typical application circuit with a 1.8-V, 100-mA power converter and a 500-mA linear battery charger using the bq25012.

Single-cell, Li-ion battery charger
The bq25012 offers an integrated power MOSFET and charge controller with programmable charge current up to 500 mA for single-cell, Li-ion battery applications. It charges the battery and powers the system from either the ac adapter or the USB with autonomous power-source selection. When the VCC supply is removed, the bq2501x automatically enters sleep mode with reverse blocking protection to extend the battery runtime.

The bq25012 charges the battery in three phases with high-accuracy current and voltage regulation: precharge, constant current, and constant voltage. Charging is terminated based on minimum current. An internal charge timer provides an additional safety feature for charge termination. The bq2501x automatically recharges the battery if the battery voltage falls below an internal voltage threshold, which is 100 mV below the voltage regulation point.

The STAT1 and STAT2 open-drain outputs indicate various charger and battery conditions, while the PG pin indicates whether the ac adapter is present. The digital input (CE) is used to enable and disable the charging process.

High-efficiency dc/dc converter
The high-efficiency, synchronous switching dc/dc converter with integrated power MOSFETs is capable of supplying up to 150 mA. The bq25012 has fixed dc/dc converter output voltage at 1.8 V, while the bq25010 has adjustable output from 0.7 to 4.2 V. They use the battery voltage, VBAT, as their input. The synchronous pulse width modulation (PWM)
controller operates at 1 MHz, minimizing the size of the filter inductor and capacitor. The undervoltage lockout circuit prevents the converter from turning on the switch or rectifier MOSFET at low input voltages or under undefined conditions.

During PWM operation, the converter uses a unique, fast-response voltage-mode-controller scheme with input voltage feedforward to achieve good line and load regulation, allowing the use of small ceramic input and output capacitors. As the load current decreases, the converter enters power-save, or pulse frequency modulation (PFM), mode. In this mode the converter operates with reduced switching frequency and with a minimum quiescent current to maintain high efficiency. However, in cases when PFM is not desirable, driving the forced PWM pin high overrides power-save mode and forces the dc/dc converter to remain in the PWM mode.

Figure 2 shows measured dc/dc converter efficiency when the bq25012 EVM is used.

Design example

Requirements
- Adapter voltage: 5 V
- Battery pack: Single Li-ion, 1800 mAh
- Battery regulation voltage: 4.2 V
- Fast-charge current: 500 mA
- Precharge and termination current: 50 mA
- dc/dc converter output voltage: 1.8 V/100 mA

Determine the inductor L

Given 40% ripple current, the inductance when

\[V_{IN} = V_{BAT,\text{max}} \quad \text{and} \quad V_{IN} = V_{BAT,\text{min}} \]

\[L = \frac{V_{BAT,\text{max}} - V_{OUT}}{\Delta I_L} \times \frac{V_{OUT}}{V_{BAT,\text{max}}} \times \frac{1}{I_S} = 25.7 \, \mu\text{H}. \]

Select \(L = 22 \, \mu\text{H} \).

The inductor saturation current should be larger than the peak current to prevent inductor saturation. Select the Taiyo Yuden LBC2016T220M inductor (22 \(\mu\text{H}, 165 \text{ mA}, 0806 \)).

Determine the output capacitor \(C_{OUT} \)

To achieve optimum loop stability, the resonant frequency \(f_0 \), composed of the inductor and output capacitor of the dc/dc converter, is approximately 16 kHz.

\[C_{OUT} = \frac{1}{(2\pi f_0)^2L} = 4.5 \times 10^{-6} \text{ (farads)} \]

Select a 4.7-\(\mu \text{F}, 6.3-\text{V}, 0603 \) ceramic capacitor.

Determine current setting resistor \(R_{SET1} \)

With \(V_{SET} = 2.5 \text{ V} \) and \(K_{SET} = 320 \text{ V/A} \),

\[R_{SET1} = \frac{V_{SET}K_{SET}}{I_{\text{Fast-charge}}} = \frac{2.5 \times 320}{0.5} = 1.6 \, \text{k\Omega}. \]

Select 1%, 1.62-k\(\Omega \) resistors.

Determine USB charge current

The ISET2 pin determines the charge current for the USB port (high = 500 mA, low = 100 mA, high-Z = disable USB charge).

Conclusion

The bq25012 fully integrates a single-cell Li-ion battery linear charger up to 500 mA and a high-efficiency, 1-MHz, synchronous switching step-down dc/dc converter. The small size, high efficiency, and easy design make this a simple and versatile IC to use for many portable power applications such as Bluetooth headsets and MP3 players.

Related Web sites
- power.ti.com
- www.ti.com/sc/device/bq25012
- www.ti.com/sc/device/bq25010
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under TI’s intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party licensed under the patents or other intellectual property of TI.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party licensed under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is for personal use. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or exceeding TI’s published specifications, or design and sales practices, voids all express and any implied warranties for the associated TI product and is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

- **Products**
 - Amplifiers: amplifier.ti.com
 - Data Converters: dataconverter.ti.com
 - DSP: dsp.ti.com
 - Interface: interface.ti.com
 - Logic: logic.ti.com
 - Power Management: power.ti.com
 - Microcontrollers: microcontroller.ti.com

- **Applications**
 - Audio: www.ti.com/audio
 - Automotive: www.ti.com/automotive
 - Broadband: www.ti.com/broadband
 - Digital control: www.ti.com/digitalcontrol
 - Military: www.ti.com/military
 - Telephony: www.ti.com/telephony
 - Video & Imaging: www.ti.com/video
 - Wireless: www.ti.com/wireless

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as “can,” “anticipate,” “believe,” “estimate,” “intend,” “may,” “plan,” “predict,” “project,” “will,” “will be,” “will continue,” “would,” “future,” “ongoing,” “potential,” “our plans,” “potential,” “possible” and similar terms of caution. Similar statements may also be included herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements.

All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks: The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc., and any use of such marks by Texas Instruments is under license. All other trademarks are the property of their respective owners.

Mailing Address: Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

© 2006 Texas Instruments Incorporated