Fully integrated TPS6300x buck-boost converter extends Li-ion battery life

By Bill Johns (Email: w-johns2@ti.com)
HPA Portable Power Applications

Introduction
For portable power applications to take advantage of the small size and high energy density of modern battery technology, they must operate efficiently over the full battery-discharge voltage range. This presents a design challenge for Li-ion-powered systems requiring a 3.3-V bus. While standard buck converters excel at efficiently converting a 4.2- to 3.0-V Li-ion battery to lower output voltages such as 1.8 V, and standard boost converters efficiently convert a Li-ion battery to higher output voltages such as 5 V, neither provides an optimal solution for generating the ever-present 3.3-V bus. Topologies such as the SEPIC and traditional buck-boost utilize the full battery capacity but suffer from drawbacks such as low efficiency, high cost, increased board area, and high part count. The TPS6300x, available in three configurations, can solve many of these problems.

The TPS63000 has an adjustable output from 1.2 V to 5.5 V. The TPS63001 and TPS63002 outputs are fixed at 3.3 V and 5.0 V, respectively. All are available in the space-saving 10-pin QFN (DRC) package.

TPS63001
The Texas Instruments TPS63001 efficiently converts the Li-ion input to a 3.3-V bus with minimized part count, small board area, and reduced cost. It integrates both buck and boost functions into a single 3 × 3-mm QFN package, including switching FETs, compensation, and protection features. Only three external parts are required for operation: input and output capacitors and an inductor. The converter operates with a peak efficiency of 96% (see Figure 1). With a peak output current of 800 mA, it delivers enough current to power most portable loads. A wide input voltage range of 1.8 to 5.5 V allows operation with many popular power sources such as dual- and triple-cell alkaline and NiMH batteries as well as 3.3- and 5-V buses.

Figure 2 shows a typical 3.3-V supply that could be powered by a single Li-ion battery. A switching frequency of 1.5 MHz allows the use of a small 2.2-µH inductor and small 0603-sized ceramic input and output capacitors. High efficiency combined with a low voltage at the output ensures good performance over the full voltage range.
external part count reduces the total solution size to only $6 \times 6 \text{ mm}$ (see Figure 3).

Advanced control topology maximizes efficiency

The TPS6300x is based on the standard H-bridge buck-boost power stage shown in Figure 4. It contains both buck and boost switching-FETs configurations that are connected to a single inductor. Unlike a standard buck-boost mode that continuously switches all four FETs simultaneously, the TPS6300x utilizes a proprietary modulator design that switches only two FETs at a time. This control scheme significantly reduces unnecessary switching losses. The TPS6300x also reduces power loss by operating in the more efficient buck or boost mode rather than the traditional buck-boost mode.

As the Li-ion battery discharges down to and below 3.3 V, a buck-boost converter must transition from buck mode to boost mode. Many buck-boost control schemes exhibit efficiency drops, power-supply jitter, or unstable output voltage at this transition point. The TPS6300x transitions seamlessly between buck and boost modes on a pulse-by-pulse basis as necessary. This provides constant PWM switching over the buck and boost range with no overlap or dead time between the two modes.

Additional features

The TPS6300x contains additional integrated features that enhance its usability in portable applications that have, for example, an extremely low quiescent current (less than 50 μA), a user-selectable power-save (PS) mode that maintains efficiency at light loads, or external synchronization to help minimize system noise.

Average-current-mode control topology provides fast transient response and low output ripple in both buck and boost modes. Output regulation tolerance is $\pm 1\%$ over the input and load ranges. Internal compensation is optimized for an external inductor of 2.2 to 4.7 μH with an output capacitor between 10 and 22 μF.
Short-circuit protection provides a foldback current limit that reduces the output current limit from its maximum value of 1.7 A to 800 mA when the output voltage falls by 3%.

This reduces power dissipation on the device during an output overload condition. When the overload has cleared, normal operation resumes. One advantage of this approach is the ability to charge large-output capacitors such as super capacitors.

PS-mode features maintain very high efficiency, even at light loads below 300 mA. In the PS mode, switching occurs only long enough to raise the output voltage slightly above the output-voltage set point. Switching then stops until the output voltage falls below the set point again. This “on then off” switching provides excellent efficiency at light loads.

Other applications
The TPS6300x also operates in a current-regulation mode to drive a white-light-emitting diode (WLED). This is accomplished by replacing the output voltage divider network with a resistor in the return path of the WLED. Since the typical forward voltage drop of a WLED is 4.2 to 3.5 V, powering it from a Li-ion cell presents a problem to most power-supply topologies because the supply is required to both buck and boost its output voltage. The TPS6300x's buck-boost functionality solves this problem and easily delivers 500 mA of current for a torch or flash application.

Conclusion
The TPS6300x is an ideal solution for converting a Li-ion battery to a 3.3-V bus. Its features such as high efficiency, small board area, low cost, and seamless transition from buck mode to boost mode make it an easy choice for the design engineer needing a high-performance design with quick turnaround.

Related Web sites
power.ti.com
www.ti.com/sc/device/TPS63000
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI products and services. Reproduction of TI products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI’s publications are subject to revision at any time without notice. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for any application assistance provided by TI employees or provided in any form of TI documentation: printed or online. Application assistance does not constitute a license from TI to operate any equipment or process covered by TI’s patents, or to violate the rights of others. TI employees do not have the authority to bind TI to any such license. Purchase of TI parts does not convey a license to use a patent covered by TI’s patents, or the patents of others, except as explicitly set forth in the applicable license agreements.

This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI and its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements.

All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Management: power.ti.com
- Microcontrollers: microcontroller.ti.com

Applications
- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital control: www.ti.com/digitalcontrol
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI and its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks: All trademarks are the property of their respective owners.

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

© 2006 Texas Instruments Incorporated