Compensating and measuring the control loop of a high-power LED driver

By Jeff Falin
Senior Applications Engineer

A mathematical model is always helpful in determining the optimal compensation components for a particular design. However, compensating the loop of a WLED current-regulating boost converter is a bit different than compensating the same converter configured to regulate voltage. Measuring the control loop with traditional methods is cumbersome because of low impedance at the feedback (FB) pin and the lack of a top-side FB resistor. In Reference 1, Ray Ridley has presented a simplified, small-signal control-loop model for a boost converter with current-mode control. The following explains how to modify Ridley’s model so that it fits a WLED current-regulating boost converter; it also explains how to measure the boost converter’s control loop.

Loop components

As shown in Figure 1, any adjustable DC/DC converter can be modified to provide a higher or lower regulated output voltage from an input voltage. In this configuration, if we assume R_{OUT} is a purely resistive load, then $V_{OUT} = I_{OUT} \times R_{OUT}$. When used to power LEDs, a DC/DC converter actually controls the current through the LEDs by regulating the voltage across the low-side FB resistor as shown in Figure 2. Because the load itself (the LEDs) replaces the upper FB resistor, the traditional small-signal control-loop equations no longer apply. The DC load resistance is

$$R_{EQ} = \frac{V_{OUT}}{I_{LED}},$$ \hspace{1cm} (1)

with

$$V_{OUT} = n \times V_{FWD} + V_{FB},$$ \hspace{1cm} (2)

V_{FWD}, taken either from the diodes’ datasheet or from measurements, is the forward voltage at I_{LED}; and n is the number of LEDs in the string.

Figure 1. Adjustable DC/DC converter used to regulate voltage

Figure 2. Adjustable DC/DC converter used to regulate current through LEDs
However, from a small-signal standpoint, the load resistance consists of R_{EQ} as well as the dynamic resistances of the LEDs, r_D, at the I_{LED}. While some LED manufacturers provide typical values of r_D at various current levels, the best way to determine r_D is to extract it from the typical LED I-V curve, which all manufacturers provide. Figure 3 shows an example I-V curve of an OSRAM LW W5SM high-power LED. Being a dynamic (or small-signal) quantity, r_D is defined as the change in voltage divided by the change in current, or $r_D = \frac{\Delta V_{FWD}}{\Delta I_{LED}}$. To extract r_D from Figure 3, we simply drive a straight tangent line from the V_{FWD} and I_{LED} for the application and compute the slope. For example, using the dotted tangent line in Figure 3, we get $r_D = \frac{(3.5 - 2.0) V}{(1.000 - 0.010) A} = 1.51 \Omega$ at $I_{LED} = 350 \, mA$.

Small-signal model

As an example of a small-signal model, the TPS61165 peak-current-mode converter driving three series OSRAM LW W5SM parts will be used. Figure 4a shows an equivalent small-signal model of a current-regulating boost converter, while Figure 4b shows an even more simplified model.

Equation 3 shows a frequency-based (s-domain) model for computing DC gain in both the current-regulating and the voltage-regulating boost converters:

$$G_P(s) = K_D \times \frac{(1-D)}{R_i} \times \left(1 + \frac{s}{\omega_n} \right) \times \frac{1}{\left(1 + \frac{s}{\omega_{RHP}} + \frac{s^2}{\omega_n^2} \right)},$$

where the common variables are

$$\omega_z = \frac{1}{ESR \times C_{OUT}},$$

$$Q_p = \frac{1}{\pi \left(1 + \frac{S_n}{S_h} \right) (1-D) - 0.5},$$

$$\omega_n = \pi \times I_{SW},$$

and

$$\omega_{RHP} = \frac{R_{EQ}}{(1-D)^2 \times L}.$$
The duty cycle, \(D \), and the modified values for \(V_{\text{OUT}} \) and \(R_{\text{EQ}} \) are computed the same way for both circuits. \(S_n \) and \(S_e \) are the natural inductor and compensation slopes, respectively, for the boost converter; and \(f_{\text{SW}} \) is the switching frequency. The only real differences between the small-signal model for the voltage-regulating boost converter and the model for a current-regulating boost converter is the resistance \(K_R \) — which multiplies by the transconductance term, \((1 - D)/R_i \) — and the dominant pole, \(\omega_p \). These differences are summarized in Table 1. See Reference 1 for more information.

Since the value of \(R_{\text{SENSE}} \) is typically much lower than that of \(R_{\text{OUT}} \) in a converter configured to regulate voltage, the gain for a current-regulating converter, where \(R_{\text{OUT}} = R_{\text{EQ}} \), will almost always be lower than the gain for a voltage-regulating converter.

Measuring the loop

To measure the control loop gain and phase of a voltage-regulating converter, a network or dedicated loop-gain/phase analyzer typically uses a 1:1 transformer to inject a small signal into the loop via a small resistance (\(R_{\text{INJ}} \)). The analyzer then measures and compares, over frequency, the injected signal at point A to the returned signal at point R and reports the ratio in terms of amplitude difference (gain) and time delay (phase). This resistance can be inserted anywhere in the loop as long as point A has relatively much lower impedance than point R; otherwise, the injected signal will be too large and disturb the converter's operating point. As shown in Figure 5, the high-impedance node where the FB resistors sense the output voltage at the output capacitor (low-impedance node) is the typical place for such a resistor.
In a current-regulating configuration, with the load itself being the upper FB resistor, the injection resistor cannot be inserted in series with the LEDs. The converter’s operating point must first be changed so the resistor can be inserted between the FB pin and the sense resistor as shown in Figure 6. In some cases, a non-inverting, unity-gain buffer amplifier may be necessary to lower the impedance at the injection point and reduce measurement noise.

With the measurement setup in Figure 6 but without the amplifier, and with $R_{\text{INJ}} = 51.1 \, \Omega$, a Venable loop analyzer was used to measure the loop. The model of a current-regulating converter was constructed in Mathcad® using the datasheet design parameters of the TPS61170, which has the same core as the TPS61165. With $V_{\text{IN}} = 5 \, \text{V}$ and I_{LED} set to 350 mA, the model gives the predicted loop response for the TPS61165EVM as shown in Figure 7, which provides an easy comparison with measured data.

We can easily explain the differences between the measured and simulated gain by observing variations in the WLED dynamic resistance and using the typical LED I-V curve as well as chip-to-chip variations in the IC’s amplifier gain.

Conclusion

While not exact, the mathematical model gives the designer a good starting point for designing the compensation of a WLED current-regulating boost converter. In addition, the designer can measure the control loop with one of the alternate methods.

Reference

Related Web sites

- power.ti.com
- www.ti.com/sc/device/TPS61165
- www.ti.com/sc/device/TPS61170
TI Worldwide Technical Support

Internet
TI Semiconductor Product Information Center Home Page
support.ti.com

TI Semiconductor KnowledgeBase Home Page
support.ti.com/sc/knowledgebase

Product Information Centers

Americas
Phone +1(972) 644-5580

Brazil
Phone 0800-891-2616

Mexico
Phone 0800-670-7544

Fax +1(972) 927-6377
Internet/Email support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa
Phone
European Free Call 00800-ASK-TEXAS
(00800 275 83927)
International +49 (0) 8161 80 2121
Russian Support +7 (4) 95 98 10 701

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Fax +(49) (0) 8161 80 2045
Internet support.ti.com/sc/pic/euro.htm

Japan
Fax International +81-3-3344-5317
Domestic 0120-81-0036

Internet/Email International support.ti.com/sc/pic/japan.htm
Domestic www.tij.co.jp/pic

Asia
Phone
International +91-80-41381665
Domestic Toll-Free Number
Australia 1-800-999-084
China 800-820-8682
Hong Kong 800-96-5941
India 1-800-425-7888
Indonesia 001-803-8681-1006
Korea 080-551-2804
Malaysia 1-800-80-3973
New Zealand 0800-446-934
Philippines 1-800-765-7404
Singapore 800-886-1028
Taiwan 0800-006800
Thailand 001-800-886-0010

Fax +886-2-2378-6808
Email tiasia@ti.com or ti-china@ti.com

Safe Harbor Statement: This publication may contain forward-looking statements that involve a number of risks and uncertainties. These “forward-looking statements” are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management “believes,” “expects,” “anticipates,” “foresees,” “forecasts,” “estimates” or other words or phrases of similar import. Similarly, such statements herein that describe the company’s products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI’s most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Mathcad is a registered trademark of Parametric Technology Corporation (PTC). ZigBee is a registered trademark of the ZigBee Alliance. All other trademarks are the property of their respective owners.

© 2008 Texas Instruments Incorporated SLYT308