Isolated RS-485 transceivers support DMX512 stage lighting and special-effects applications

By Thomas Kugelstadt
Senior Applications Engineer

Stage lighting and special-effects applications in modern theaters, opera houses, sports arenas, and concert halls utilize complex data-transmission networks. These networks, often reaching distances of up to 1200 m, provide communication between several hundreds of network nodes that control dimmers, moving lights, fog machines, and other special-effects equipment.

The first standard ensuring reliable intercommunication for these applications was known as DMX512 and was originally developed in 1986 by the United States Institute for Theatre Technology (USITT) Engineering Commission. In 1998, the Entertainment Services and Technology Association (ESTA) took over maintenance of this standard. A revised version was approved by the American National Standards Institute (ANSI) in 2004. The standard was revised again in 2008 and is now officially known as ANSI E1.11-2008, entitled Entertainment Technology—USITT DMX512-A—Asynchronous Serial Digital Data Transmission Standard for Controlling Lighting Equipment and Accessories, or DMX512-A in short.

Topology
A DMX512 network utilizes a multidrop topology similar to RS-422, where a single controller (master node) sends repetitive control data to multiple receivers (slave nodes).

Within the network, all nodes are connected through daisy-chaining; that is, each slave node has an IN connector as well as an OUT connector. The controller, which has only an OUT connector, connects to the IN connector of the first slave. The OUT connector of the first slave connects to the IN connector of the next slave, and so on (see Figure 1). The OUT connector of the last slave in the chain connects to a 100-Ω or 120-Ω terminator plug.

So that the ingoing and outgoing data signals of a DMX512 port can be distinguished, the IN connectors are male XLR-5, and the OUT connectors are female XLR-5 (see Figure 2).
Protocol
A DMX512 controller transmits packets of asynchronous serial data at 250 kbps (see Figure 3). A data packet starts with a break (logic low) and is followed by a mark (logic high), a sequence known as mark-after-break (MAB). Following MAB is a time slot consisting of a start bit, eight data bits, and two stop bits. The entire packet consists of a maximum of 513 time slots, 512 of which are actual data slots. The first slot, known as the start code, specifies the type of data in the packet.

Physical layer
The DMX512-A standard specifies EIA-485 as the network's physical layer, thus allowing for a maximum common-mode loading of up to 32 unit loads and a maximum bus length of 1200 m. Network wiring typically consists of twisted-pair cable with a characteristic impedance of either 120 Ω for RS-485 cable or 100 Ω for CAT5 cable, with a termination resistor of equal impedance at the end of the bus.

In addition to EIA-485, DMX512-A recommends earth-grounded transmitter ports and isolated receiver ports to avoid the formation of disruptive ground loops (see Figure 4).

Furthermore, DMX512-A makes provisions for enhanced-functionality (EF) topologies that enable the use of responders. The responders are receiving nodes that can return status information to the controller. The two EF topologies most often applied are EF1 and EF2. EF1 provides a half-duplex link between the DMX512 network's controller and responders. EF2 provides a full-duplex link between the network nodes. In both cases, the I/O port of responders, falling under the category of receiving devices, must have isolated transmit and receive ports.

Full-duplex RS-485 transceivers are the devices best suited for these applications because simple rewiring of the A,B and Y,Z bus terminals can accommodate not only the receiver-only configuration in standard DMX512 systems but also the half- and full-duplex configurations used respectively in EF1 and EF2 systems.

Legacy receiver designs often used a non-isolated transceiver in combination with opto-isolators. However, the mold compound in these isolators, basically representing the dielectric between the light-emitting diode and the receiving photo transistor, absorbed moisture over time, reducing the long-term stability of the isolation barrier.

A further drawback of legacy designs was the use of an isolated power supply that was required to provide the...
supply voltage across the isolation barrier. Bulky DC/DC-converter modules were often applied whose cost exceeded that of all the signal-path components—including the transceiver, isolators, and UARTs—by up to 300%.

With the recent introduction of digital capacitive-isolation technology, the issue of long-term reliability has been solved. The isolation barrier, consisting of small, high-voltage capacitors in the range of 120 fF, uses silicon dioxide (SiO2) as the isolation dielectric. SiO2 is one of the hardest isolation materials with little moisture absorption, thus providing extremely high, long-term reliability and long life.

Furthermore, the new Texas Instruments (TI) family of isolated RS-485 transceivers possesses integrated transformer drivers that drastically simplify the design of the isolated power supply. The on-chip transformer driver is basically a free-running oscillator with a typical frequency, \(f_{\text{OSC}} \), of 400 kHz. This oscillator drives two powerful output transistors, which in turn drive an external center-tapped transformer in a push-pull configuration. The relative high frequency allows for the use of small transformers that enable an overall small-form-factor design.

Figure 5 shows a complete solution for a responder circuit that complies with DMX512-A. As an isolated, 3.3-V, low-power transceiver, TI’s ISO35T provides RS-485-compliant bus signals with a 1.5-V minimum and a 2-V typical differential output voltage at full differential and common-mode loading. The device’s maximum data rate of 1 Mbps satisfies the 250-kbps requirement of DMX512-A, and the longer rise and fall times of 200 ns ensure low electromagnetic interference.

Here the incoming control data from the DMX512 bus is signal-conditioned by the input comparator and sent across the isolation barrier towards the receiver output. Output data at the R terminal enters the UART interface of TI’s MSP430F2132, a low-power microcontroller. The microcontroller converts the UART data into a synchronous, high-speed serial data stream to feed an eight-channel, high-voltage-output digital-to-analog converter (DAC). TI’s DAC7718 allows for bipolar outputs of up to ±16.5 V and unipolar outputs of up to ±33 V.

Because stage special-effects equipment uses unipolar control voltages in the range of 0 to 10 V, the DAC7718 is an ideal analog interface for this type of application, enabling the control of up to eight light dimmers per network node.

The remaining node circuitry, including the DAC, the microcontroller, and the transceiver, operates from a single 3.3-V supply. The 3.3-V low-dropout regulator (TI’s TPS76333) on the isolated side provides up to 150 mA of output current along with overcurrent limiting and thermal protection.

Related Web sites

interface.ti.com

www.ti.com/sc/device/partnumber

Replace partnumber with DAC7718, ISO35T, ISO1176T, ISO3086T, MSP430F2132, or TPS76333.
TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center
Home Page
support.ti.com

TI E2E™ Community Home Page
e2e.ti.com

Product Information Centers

Americas

Phone +1(972) 644-5580
Brazil Phone 0800-891-2616
Mexico Phone 0800-670-7544

Fax +1(972) 927-6377
Internet/Email support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone
European Free Call 00800-ASK-TEXAS
(00800 275 83927)
International +49 (0) 8161 80 2121
Russian Support +7 (49) 95 98 10 701

Fax +49 (0) 8161 80 2045
Internet support.ti.com/sc/pic/euro.htm
Direct Email asktexas@ti.com

Japan

Phone Domestic 0120-92-3326
Fax International +81-3-3344-5317
Domestic 0120-81-0036

Internet/Email International support.ti.com/sc/pic/japan.htm
Domestic www.tij.co.jp

Asia

Phone
International +91-80-41381665
Domestic Toll-Free Number

Note: Toll-free numbers do not support mobile and IP phones.

Australia 1-800-999-084
China 800-820-8682
Hong Kong 800-96-5941
India 1-800-425-7888
Indonesia 001-803-8861-1006
Korea 080-551-2804
Malaysia 1-800-80-3973
New Zealand 0800-446-934
Philippines 1-800-765-7404
Singapore 800-866-1028
Taiwan 0800-006800
Thailand 001-800-866-0010

Fax +8621-23073686
Email tiasia@ti.com or ti-china@ti.com
Internet support.ti.com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for meeting such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated