Industrial data-acquisition interfaces with digital isolators

By Thomas Kugelstadt
Senior Applications Engineer

Galvanic isolation has become the mantra in the industrial engineering community as legal regulations call for its implementation in industrial system designs. Galvanic isolation allows for the exchange of information and power between two communicating points while preventing actual current flow at the same time.

Galvanic isolation has two main benefits. First, it protects people and equipment from potentially dangerous current and voltage surges. Second, it prevents the unintentional design of ground loops, whose noise would otherwise interfere with signals from data links and other interconnections.

Legacy designs of analog I/O, instrumentation, motion-control, and other sensor interfaces often used single-channel isolation amplifiers to separate the sensor circuitry in the harsh environment of the factory floor from the signal-processing stage in the noise-free control-room environment. Advancements in technology and design have led to new space- and power-saving digital isolators whose multichannel capability permits equipment designs with smaller form factors. This article explains both types of isolators and their operational principles. Application examples are also provided.

Legacy isolation designs

A classic example of a legacy design using an isolation amplifier is the single-channel, isolated temperature-measurement circuit in Figure 1. Here a thermocouple converts the measured temperature into a low-voltage DC output. The following resistor-diode network conditions the input signal by providing operating-point biasing, compensating for temperature drift, and boosting the input sufficiently to match the input-voltage range of the isolation amplifier.

The isolation amplifier is a precision amplifier that uses duty-cycle modulation (DCM) to transmit the input signal across a capacitive isolation barrier. DCM ensures immunity to varying barrier characteristics while maintaining signal integrity. This results in high reliability and good common-mode transient immunity.

![Figure 1. Isolated temperature measurement](image-url)
Inside the device, the input and output sections are galvanically isolated by two matched capacitors (see Figure 2). The input section converts the input voltage, V_{IN}, into an input current, I_{IN}, via an input resistor, R_{IN}. Configured as an integrator, amplifier A1 integrates the difference between I_{IN} and the current source until the input threshold of the following comparator is exceeded. Together, the comparator and the sense amplifier, AS1, force the current source to switch at the frequency of the internal 500-kHz oscillator. The resulting drive signal into the capacitive barrier is a complementary, duty-cycle-modulated square wave.

The output section demodulates the signal from the isolation barrier through a balanced low-pass filtering. Sense amplifier AS2 detects signal transitions across the barrier and drives a switched current source into integrator A2. This stage balances the duty-cycle-modulated current against the feedback current through R_F, thus yielding an average value of V_{OUT} equal to V_{IN}. The sample-and-hold (S/H) amplifiers in the feedback loop remove undesired voltage ripples inherent in the demodulation process.

Isolation amplifiers, while highly accurate and reliable, have several technological drawbacks. These amplifiers possess a low input-signal bandwidth no greater than 50 kHz. Their requirement for a minimum power supply of ±4 V does not support modern low-voltage designs. Their expensive manufacturing process requires the separate fabrication of input and output chips, laser trimming for precise circuit matching, and final assembly of both chips together with the isolation capacitors into one package.

Modern isolation designs

Modern data-acquisition designs use analog-to-digital converters (ADCs) whose inputs are multiplexed into a single-channel conditioning path (see Figure 3). A programmable gain amplifier (PGA) boosts the weak input
Interface (Data Transmission)

signal, and the converter applies delta-sigma modulation to the signal to convert it to a digital data stream. The digital-conversion results are then transmitted across the digital isolator to a system controller for further processing in the digital domain.

Digital isolators can possess various isolation barriers that use magnetic, optoelectric, or capacitive isolation technologies. The isolator in Figure 4 is based on a capacitive isolation-barrier technique. The device consists of two parallel data channels, a high-speed AC channel with a bandwidth ranging from 100 kbps up to 150 Mbps, and a low-speed DC channel covering the range from 100 kbps down to DC.

Inside the isolator, a single-ended input signal entering the AC channel is converted into a balanced signal through inverting and non-inverting input buffers. RC networks then differentiate the signal into transients, and comparators convert the transients into short pulses. A final flip-flop then converts these pulses into an output signal that is identical in phase and shape to the original input signal.

A decision logic (DCL) in the form of a watchdog timer measures the durations between signal transients. If the duration between two consecutive transients exceeds the maximum time window (as in the case of a low-frequency signal), the output multiplexer is switched from the high-speed AC to the low-speed DC channel.

Because low-speed signals lack sufficient transitions to easily cross the tiny isolation capacitors, the carrier frequency of an internal oscillator is applied to them via a pulse-width modulator (PWM). Past the barrier, a low-pass filter (LPF) removes the high-frequency content from the actual data prior to passing it on to the output multiplexer.

Industrial applications

The two most common applications for industrial data-acquisition systems are in process control and factory automation. Process-control systems typically detect or measure multiple physical quantities, such as temperature and pressure, within one system, while factory automation usually monitors one physical quantity across multiple systems. Consequently, the configuration of data converters used in each application differs significantly. Process-control systems addressing a wide range of sensor and transducer types require a wide range of parametric settings for gain, sampling rate, measurement repetition, and impedance buffering. In strong contrast, factory automation often gets along with monitoring multiple sensors of the same type, thus requiring only a minimum number of parametric settings.

Because the number of parametric settings impacts the isolation efforts and the associated costs of the digital-interface design, it is important to distinguish between

![Figure 4. Digital capacitive isolator](image-url)
process control and factory automation. Two typical designs of a data-acquisition system are shown in Figures 5 and 6 to illustrate the difference.

In the Figure 5 configuration, a variety of sensors measure different quantities such as temperature, pressure, and current. Various gain settings maximize the input dynamic range of the ADC for each sensor. Switching between sampling rates might be necessary to match the rate of change at certain input channels. An optional power-down feature preserves ADC power when measurements are not performed. This high versatility necessitates up to eight isolated control channels.

By contrast, in the Figure 6 configuration, four thermocouples of the same type measure the temperatures of different types of equipment continuously. While this design uses the same ADC as in Figure 5, the uniform sensor characteristics allow the settings for gain and sample rate to be fixed and the power-down feature to be disabled. This system configuration drastically reduces isolation requirements because there are only four lines for data and control.

Conclusion

Isolation amplifiers are out, and digital isolators are in. To save design time and board space and to keep the cost of materials down, it is imperative to understand the system requirements before deciding what type of isolator to use.
References
For more information related to this article, you can download an Acrobat® Reader® file at www.ti.com/lit/litnumber and replace “litnumber” with the TI Lit. # for the materials listed below.

Document Title TI Lit. #

Related Web sites
interface.ti.com
www.ti.com/sc/device/partnumber
Replace partnumber with ADS1234, ISO7240C, ISO7241C, MSP430F2132, or TPS55010

Figure 6. Isolated data-acquisition system in factory automation
TI Worldwide Technical Support

Internet
TI Semiconductor Product Information Center
Home Page
support.ti.com

TI E2E™ Community Home Page
e2e.ti.com

Product Information Centers

Americaas Phone +1(972) 644-5580
Brazil Phone 0800-891-2616
Mexico Phone 0800-670-7544

Fax +1(972) 927-6377
Internet/Email support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone
European Free Call 00800-ASK-TEXAS
(00800 275 83927)
International +49 (0) 8161 80 2121
Russian Support +7 (4) 95 98 10 701

Fax +(49) (0) 8161 80 2045
Internet support.ti.com/sc/pic/euro.htm
Direct Email asktexas@ti.com

Japan

Phone Domestic 0120-92-3326
Fax International +81-3-3344-5317
Domestic 0120-81-0036

Internet/Email International support.ti.com/sc/pic/japan.htm
Domestic www.tij.co.jp

Asia

Phone
International +91-80-41381665
Domestic Toll-Free Number

Note: Toll-free numbers do not support mobile and IP phones.

Australia 1-800-999-084
China 800-820-8682
Hong Kong 800-96-5941
India 1-800-425-7888
Indonesia 001-803-8861-1006
Korea 080-551-2804
India 1-800-425-7888
Indonesia 001-803-8861-1006
Korea 080-551-2804
Singapore 800-886-1028
Taiwan 0800-006800
Thailand 001-800-866-0010
Fax +8621-23073686
Email tiasia@ti.com or ti-china@ti.com
Internet support.ti.com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

E2E is a trademark of Texas Instruments. Acrobat and Reader are registered trademarks of Adobe Systems Incorporated. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page: e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated