A solar-powered buck/boost battery charger

By Jeff Falin, Factory Applications Engineer, and Wang Li, Factory Applications Engineer

Introduction
Charging batteries with solar power has become very popular. A solar cell’s typical voltage is 0.7 V. Panels range from having one cell to several cells in series and are therefore capable of producing a wide range of voltages. Most battery chargers on the market today step down, or buck, their input voltages. Therefore, to charge a two-cell lithium-ion (Li-Ion) battery, for example, a solar panel capable of producing at least 8.4 V is needed. However, this same charger cannot be used to step up, or boost, its input voltage to charge a multicell Li-Ion battery used in a laptop or a 12-V lead-acid battery used in a solar lantern. It is possible to modify a buck battery charger into a battery charger that both bucks and boosts. This article identifies the key concerns of changing a buck battery charger into a buck/boost SEPIC charger and provides a design example using the Texas Instruments bq24650 battery charger controller for solar power.

SEPIC power stage versus buck power stage
Figure 1 shows a simplified block diagram of a battery charger controller. The charger controller IC monitors the charging current through R_{SNS} and the battery voltage through the feedback resistors (R_{TFB} and R_{BFB}) and adjusts the output of the power stage to meet the charging parameters. If the input source voltage can be both higher and lower than the maximum battery voltage, a SEPIC power stage capable of bucking and boosting can be used.

Figure 2 compares a synchronous buck power stage and a nonsynchronous SEPIC power stage. The buck controller’s high-side gate drive ($GDRV_{HI}$) is used to drive the SEPIC converter’s power FET (Q_{PWR}). However, a buck controller cannot be easily configured to drive a synchronous rectifying switch for a SEPIC converter. Therefore, Q_{SYNC} is replaced by diode D_{RECT}, and the low-side gate drive is not used. A buck converter also provides continuous inductor current, filtered by the capacitors C_{O_BUCK} and C_{O_CHRGR}, to the load, regardless of which switch is on. Unlike the buck converter, the SEPIC converter uses Q_{PWR} only to charge the inductor. During this time the output capacitor must supply the battery-charging current. When D_{RECT} turns on, the now charged inductor provides both the output capacitor recharging and battery-charging currents. Hence, the SEPIC converter’s output-voltage ripple will always be...
higher than that of a buck converter with the same inductor and output capacitance and same output power. This ripple can cause inaccurate current measurement across the current-sense resistor. As shown in Figure 1, a SEPIC charger requires a larger filtering capacitor (C_{FLTR}) and larger output capacitors (C_{O,SEPIC} and C_{O,CHRGR}) than does a buck charger.

Limiting precharge current when V_{BAT} << V_{BAT(LOW)}

With a deeply discharged battery, the battery voltage is below a predetermined V_{BAT(LOW)} threshold. For battery safety, the charger should not provide full charge current to the battery. Therefore, a current-limiting resistor between the charger and battery is recommended to limit the charge current to a lower, precharging current value. Once the battery voltage exceeds the selected V_{BAT(LOW)}, this resistor can be shorted out with a FET to allow the controller to provide higher charge currents. Figure 3 shows how resistor R_{PRECHRG}, a FET (Q\text{SHRT}), and a comparator can be used to implement this functionality.

R_{PRECHRG} is sized so that the voltage drop from I_{PRECHRG} flowing through R_{PRECHRG}, plus the deeply discharged battery voltage (V_{BAT(LOW)}), is higher than the charger’s low-battery threshold (for example, V_{LOWV}), typically sensed by the V_{FB} pin. Q\text{SHRT} is sized to accommodate the maximum battery voltage (V_{BAT(MAX)}) and the maximum charge current (I_{CHRG(MAX)}). The resistor across the comparator (R_{HYS}) provides hysteresis. Therefore, resistor dividers are needed on the sensed voltages fed to the comparator.

Ensuring operation when V_{BAT} > V_{IN} or when V_{BAT} < V_{TH(BATSHORT)}

A buck charger expects the battery voltage to always be less than its input voltage. In fact, many chargers have a feature that puts the charger into sleep mode if V_{BAT} is greater than V_{IN}. Alternatively, if V_{BAT} falls below a certain threshold, the IC may assume the battery is shorted and enter protection mode. If the current-sense pins (V_{RSNS+} and V_{RSNS-}) are used to determine the battery’s state, the sensed voltages need to be level shifted. Figure 4 shows how to use an instrumentation amplifier configured as a current-shunt monitor to level shift the current information sensed across R_{SNS}. This circuit keeps the DC set point of the sensed voltages low enough that the IC does not enter sleep mode; it also keeps the voltages high enough so that the IC does not enter short-circuit protection. If the charger does not have its own reference voltage (V_{REF}), an external reference IC can be used.
Computing the maximum charge current

A SEPIC converter’s maximum charge current is a function of its available input power, both voltage and current. A simple way to estimate the maximum charge current is to compute a power balance where \(\frac{P_{\text{OUT}}}{P_{\text{IN}}} = \eta_{\text{EST}} \), where \(\eta_{\text{EST}} \) is an estimate of the boost charger's efficiency in similar operating conditions. The following equation can be used to estimate the maximum charge current at a specific battery voltage:

\[
I_{\text{CHRG(MAX)}} = \frac{V_{\text{IN(MPP)}} \times I_{\text{IN(MPP)}} \times \eta_{\text{EST}}}{V_{\text{BAT}}}
\]

where \(V_{\text{IN(MPP)}} \) is the solar panel’s maximum power-point voltage, and \(I_{\text{IN(MPP)}} \) is the solar panel’s maximum power-point current.

\(R_{\text{SNS}} \) should be sized to provide \(I_{\text{CHRG(MAX)}} \). Because capacitor \(C_{\text{MID}} \) between the inductors stays charged to the input voltage, \(Q_{\text{PWR}} \) must have a voltage rating slightly higher than \(V_{\text{IN(MAX)}} + V_{\text{BAT(MAX)}} \). In a SEPIC converter, \(L_1 \)’s peak current is the maximum input current (\(I_{\text{IN(MPP)}} \)) plus half the ripple current (\(\Delta I_{L}/2 \)), and the peak current of \(L_2 \) and diode \(D_{\text{RECT}} \) is the maximum output current (\(I_{\text{CHRG(MAX)}} \)) plus \(\Delta I_{L}/2 \). \(Q_{\text{PWR}} \) sees the sum of these peak currents when it is on, so it must have a current rating higher than \(I_{\text{IN(MPP)}} + I_{\text{CHRG(MAX)}} + \Delta I_{L} \). The bq24650 charger controller can adjust the charge current to keep the solar-panel output at its maximum power point.

Design example of a solar-charged battery

Table 1 maps the functional pin names from Figure 1 to the corresponding bq24650 pin names in Figure 5. Figure 5 shows the charge controller configured to charge a two-cell Li-Ion battery with a maximum charge voltage of 8.4 V. The maximum charge current was limited to 1.3 A. The power NFET (Q2) and rectifying diode (D1) were sized using standard design guidelines for a SEPIC converter. The inductor and the output capacitors (C3 and C4) were sized to reduce inductor-current ripple and the resulting output-voltage ripple as well as to improve the small-signal control-loop phase margin. A coupled inductor, in the same footprint but only slightly taller than its single-inductor counterpart, was used instead of two separate inductors. The coupling effect allows the use of half the inductance that would have been necessary for the same current ripple.

Table 1. Cross-reference for controller pin names

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>bq24650 PIN NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDRV_HI</td>
<td>HIDRV</td>
</tr>
<tr>
<td>GDRV_LO</td>
<td>LODRV</td>
</tr>
<tr>
<td>V_RSNS+</td>
<td>SRP</td>
</tr>
<tr>
<td>V_RSNS-</td>
<td>SRN</td>
</tr>
<tr>
<td>FB</td>
<td>VFB</td>
</tr>
</tbody>
</table>

Figure 5. The bq24650 configured as a SEPIC charger
if two separate inductors had been used. R18 was used to slow down the fast turn-on of Q1. Also, the controller’s PH pin was grounded to help provide the boosted output voltage. A 10-µF filter capacitor (C5) was necessary to reduce switching noise coupled into the current-shunt monitor (U2). To prevent the output of the current-shunt monitor (U2) from loading the SRP pin, a unity-gain buffer (U3), with ground shifted to match that of the current monitor, was necessary. With a discharged battery voltage of 4.5 V and the bq24650’s $V_{LOW} = 1.55 \ V/2.1 \ V \times 8.4 \ V = 6.2 \ V$, a minimum pre-charge resistance ($R_{PRECHRG(MIN)}$) greater than

$$\frac{6.2 \ V - 4.5 \ V}{0.133 \ A} = 13 \ \Omega$$

was needed. A value of 100 Ω was selected for R20.

Figure 6 shows the efficiency of this charger. Although the bq24650 is internally compensated for a buck charger, when it is configured as a SEPIC charger its small-signal control loop is stable over a wide operating range, as shown in Figure 7. When using the bq24650 with a different power-stage inductor and different capacitors and batteries, the designer is responsible for confirming loop stability.

Conclusion

The demand for a buck/boost battery charger is growing, especially as demand for charging from solar panels grows. By following the guidelines presented in this article and using the proposed additional circuitry, the designer can convert a buck charger controller like the bq24650 into a SEPIC charger. When converting a different buck charger into a buck/boost SEPIC charger, the designer is responsible for understanding how that charger operates in order to determine which additional circuitry is necessary and to confirm stable operation.

Related Web sites

power.ti.com, www.ti.com/product/partnumber

Replace `partnumber` with bq24650, CSD17308Q3, INA139, OPA237, or TLV7211.
TI Worldwide Technical Support

Internet
TI Semiconductor Product Information Center
Home Page
support.ti.com

TI E2ETM Community Home Page
e2e.ti.com

Product Information Centers

Americas
Phone +1(972) 644-5580
Brazil
Phone 0800-891-2616
Mexico
Phone 0800-670-7544
Fax +1(972) 927-6377
Internet/Email support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone
European Free Call 00800-ASK-TEXAS
(00800 275 83927)
International +49 (0) 8161 80 2121
Russian Support +7 (4) 95 98 10 701

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Asia

Phone
International +91-80-41381665
Domestic Toll-Free Number

Note: Toll-free numbers do not support mobile and IP phones.

Australia 1-800-999-084
China 800-820-8682
Hong Kong 800-96-5941
India 1-800-425-7888
Indonesia 001-803-8861-1006
Korea 080-551-2804
Malaysia 1-800-80-3973
New Zealand 0800-446-934
Philippines 1-800-765-7404
Singapore 800-886-1028
Taiwan 0800-006800
Thailand 001-800-886-0010
Fax +8621-23073686
Email tiasia@ti.com or ti-china@ti.com
Internet support.ti.com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Japan

Phone
Domestic 0120-92-3326
Fax
International +81-3-3344-5317
Domestic 0120-81-0036
Internet/Email
International support.ti.com/sc/pic/japan.htm
Domestic www.ti.co.jp/pic

Fax +8621-23073686
Email tiasia@ti.com or ti-china@ti.com
Internet support.ti.com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www.dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www.logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated