IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD48, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.
Contents

Introduction ... [4]

Data Acquisition

WEBENCH® tools and the photodetector’s stability [5]

The first priority for a photosensing application is to design good stability into the transimpedance amplifier circuit. This article is about the photodiode portion of the WEBENCH Sensor Designer, which is fully equipped to provide circuits designed with stable 60° phase margins.

Power Management

Harnessing wasted energy in 4- to 20-mA current-loop systems [10]

Remote measurement systems commonly use a 4- to 20-mA current-loop signal to reliably transfer data. This article describes how the unused power in this type of system can be harnessed at the remote transmitter location to power data converters, microprocessors, or even low-power RF transmitters, expanding the system’s application possibilities.

LDO noise examined in detail .. [14]

The complexity of telecommunication systems has increased to the point that high-quality power rails are essential. This article examines a basic LDO topology to determine its dominant noise sources and suggests ways to minimize output noise with little loss in LDO performance.

Simple open-circuit protection for boost converters in LED driver applications [21]

The basic high-brightness LED driver that uses a high-voltage boost converter in a constant-current configuration can generate excessive voltages if there is a break in the LED/feedback loop. This article presents a simple method of robust open-circuit fault protection that uses a Zener diode and a resistor with negligible changes in overall efficiency.

Interface (Data Transmission)

How to design an inexpensive HART transmitter [24]

Process measurement and control devices can communicate via the conventional 4- to 20-mA current loop by utilizing the highway addressable remote transducer (HART) protocol. This article describes the simple operational-amplifier circuits that can be used to design a low-cost HART transmitter for the 4- to 20-mA current loop.

Design considerations for system-level ESD circuit protection [28]

The operating environment for mobile electronic devices can often expose the devices to electrostatic discharge (ESD) hazards. For example, an ESD can occur between a user’s finger and a tablet’s USB or HDMI connector and cause irreversible damage to the tablet. This article explains the difference between system-level and device-level ESD events and offers system-level design techniques that are targeted to protect against everyday ESD events.

Index of Articles ... [32]

TI Worldwide Technical Support ... [38]

To view past issues of the *Analog Applications Journal*, visit the Web site

www.ti.com/aaj
Analog Applications Journal is a collection of analog application articles designed to give readers a basic understanding of TI products and to provide simple but practical examples for typical applications. Written not only for design engineers but also for engineering managers, technicians, system designers and marketing and sales personnel, the book emphasizes general application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific circuits but as examples of how devices could be used to solve specific design requirements. Readers will find tutorial information as well as practical engineering solutions on components from the following categories:

- Data Acquisition
- Power Management
- Interface (Data Transmission)
- Amplifiers: Audio
- Amplifiers: Op Amps
- Low-Power RF
- General Interest

Where applicable, readers will also find software routines and program structures. Finally, Analog Applications Journal includes helpful hints and rules of thumb to guide readers in preparing for their design.
WEBENCH® tools and the photodetector's stability

By Bonnie C. Baker
WEBENCH Applications Engineer

The first priority for a photosensing application is to design good stability into the trans-impedance amplifier circuit. The Texas Instruments developers of WEBENCH® designer tools have conscientiously provided photosensing designs with stable 60° phase margins, or an approximate 8.7% overshoot from a step-input signal.

WEBENCH Designer tools have powerful software algorithms and visual interfaces that deliver complete power, lighting, and sensing applications in seconds. This enables the user to make value-based comparisons at a system and supply-chain level before a design is committed. One tool among others embedded in the WEBENCH environment is the photodiode portion of Sensor Designer. This article is specifically about the WEBENCH Sensor Designer's built-in photodiode circuit stability.

The consequence of not paying attention to stability

A wide variety of light-sensing applications use photodiode preamplifier (preamp) circuits. These circuits convert the light information from an LED or light source into a useful voltage. With precision photoconductive circuits with zero bias voltage (photoZB) and high-speed photoconductive circuits with negative or reverse bias voltage (photoRB), the designed-in circuit phase margin can be critical. A few of the precision photoZB applications where photodiode preamps are used include CT scanners, blood analyzers, smoke detectors, and position sensors. These precision circuits require voltage-feedback amplifiers that have low input bias current, low offset voltage, and low noise. The less precise photoRB applications that depend on sensing digital light signals include bar-code scanners and fiber-optic receivers. These higher-speed application circuits require voltage-feedback amplifiers that have wider bandwidths.

The simplest way to design a photodiode preamp circuit is to put the photodiode across the amplifier inputs, ground the non-inverting input, and place a resistor in the feedback loop. One can then configure the light-sensing photodiode with or without a bias voltage. In the precision photoZB configuration (Figure 1a), the input amplifier needs to have a FET or CMOS input structure with low input bias current and low offset voltage. In this circuit, the photodiode cathode is connected to the amplifier's inverting input, and the photodiode anode is connected to ground. This circuit places a zero bias across the photodiode sensor. Notice the direction of current \(I_{PH} \) with respect to the photodiode's anode and cathode.

If digital speed and fast response times are important, the photoRB configuration (Figure 1b) uses the photodiode with a reverse bias voltage. This reverse bias voltage creates a leakage current across the photodiode. However, the parasitic capacitance across the photodiode is considerably lower compared to the photoZB configuration. This reduction in the photodiode capacitance increases the circuit's bandwidth. The amplifiers used for a reverse-biased photodiode preamp configuration can have FET, CMOS, or bipolar inputs; but the higher the amplifier's bandwidth is, the better.

In either configuration, incident light on the photodiode causes the current \(I_{PH} \) to flow through the diode from cathode to anode. That current also flows through the feedback resistor, \(R_F \), causing a voltage drop across the circuit.
resistor. The amplifier's input stage keeps the amplifier's inverting input near virtual ground.

The simple solutions in Figures 1a and 1b are often destined for failure. Figure 2 shows how a step-input light signal can create a horrible ringing at the amplifier's output, V_{OUT}. With luck, it is possible that this photosensing circuit may not ring, but it is best to understand and compensate for this stability problem.

In Figure 3, the added capacitance, C_F, in the feedback loop changes the circuit's overall phase margin and removes oscillation from the output signal. However, this simple solution overcompensates by setting the value of C_F too high, causing the amplifier's output to move too slowly.

In photoZB applications, the overcompensation in Figure 3 may be acceptable, but this circuit consumes more power and has higher noise than a properly compensated circuit. With respect to photoRB applications, this circuit response is unacceptable because it does not produce a good square-wave response. Since photoRB circuits rely on clean digital square-wave signals, the configurations in Figures 2 and 3 both clearly require attention to create good compensation.
Elements at play in photodiode compensation

The target phase margin for this transimpedance amplifier is 60°. For a step response, this phase margin produces an 8.7% overshoot (Figure 4). Some designers will say that the proper phase margin for this two-pole system is 45°. As Figure 4 shows, the step response of a circuit with a 45° phase margin is 22.5%.

Theoretically, both phase margins will produce stable circuits; however, they do not take into account the variations in amplifier bandwidth, resistance, capacitance, and stray capacitance. These kinds of variations can have a dramatically negative impact on the circuit with a 45° phase margin.

Proper compensation of the simple circuit in Figure 3 requires a clear understanding of the capacitive and resistive elements at play. Figure 5 shows a system model that includes a feedback network (RF and CF) and an operational amplifier. The following discussion will show how combining all the capacitive elements can directly impact this circuit’s frequency response. WEBENCH Sensor Designer can be used to design for good system stability before the hardware is implemented, or manual precalculation can be performed.

![Figure 5. System model of photodetector circuit](image)

The transfer function for the two-pole system circuit in Figure 5 is

$$V_{OUT} = \frac{I_{PD} \times R_F}{1 + 1/\left[A_{OL}(j\omega) \times \beta\right]}.$$
where β is the inverse of the noise gain, or

$$\beta = \frac{1}{1 + Z_{IN}/Z_{F}}.$$

Z_{IN} is the input network impedance, or

$$Z_{IN} = R_{SH} \frac{j\omega}{(C_D + C_{CM} + C_{DIFF} + C_{ST})}.$$

Z_{F} is the feedback network impedance, or

$$Z_{F} = R_{F} \frac{j\omega}{(C_{RF} + C_{F})}.$$

Applying some algebra yields the following equations for system pole frequency, f_p, and system zero frequency, f_z, respectively:

$$f_p = \frac{1}{2\pi R_F C_F}$$

$$f_z = \frac{1}{2\pi \left(\frac{R_F \times R_{SH}}{R_F + R_{SH}} \right) \times (C_D + C_{CM} + C_{DIFF} + C_{ST} + C_F)}$$

Figure 6 graphically shows the system’s frequency response. In this diagram, f_i is the intercept frequency between the feedback system ($1/\beta$) and the amplifier open-loop gain (A_{OL}). The frequency f_{BW} is the gain-bandwidth product of the amplifier. In this system, the DC gain, G_1, is determined by resistors R_F and R_{SH}. Note that the feedback resistor (R_F) is in the second term’s numerator and that the input resistor (R_{SH}) is in the denominator. The high-frequency gain, G_2, in this system depends on the capacitors in the system. Note that the second term’s numerator contains the summation of the input capacitors and that the denominator contains the circuit’s feedback capacitor (C_F).

Coming to terms with stability

The placement of the pole frequency (f_p) and the intercept frequency (f_i) between $1/\beta$ and A_{OL} determines the stability of this circuit. The circuit’s stability is determined at the point where the feedback curve and the amplifier’s open gain curve intercept. Specifically, the phase margin at f_i dictates the type and amount of ringing or overshoot the circuit produces. For instance, the circuit’s phase margin is 45° if f_p is equal to f_i. A 45° phase margin produces $\sim22.5\%$ of overshoot on a square-wave input signal. If the circuit’s phase margin is equal to $\sim60^\circ$, the pole’s corner frequency occurs before the intercept of the amplifier’s A_{OL} curve (Figure 6). If the corner frequency of f_p is below the A_{OL} intercept frequency, it is possible to implement a phase margin of 60° into the design. A 60° phase margin produces $\sim8.7\%$ of overshoot on a square-wave input signal.
The WEBENCH implementation

The WEBENCH implementation of the photoRB sensing network includes selecting an appropriate feedback capacitor (C_F) for the ideal 60° phase margin, selecting the proper amplifier, and following the ADC recommendations for the circuit. WEBENCH Sensor Designer provides a working circuit along with a purchasable, unpopulated printed circuit board. Figure 7 shows a block diagram of WEBENCH's photoRB system.

Conclusion

To design a photosensing circuit with good stability, there are several avenues that can be followed. WEBENCH Sensor Designer is fully equipped to provide circuits designed with stable 60° phase margins.

References

Related Web sites

dataconverter.ti.com
www.ti.com/webench
Harnessing wasted energy in 4- to 20-mA current-loop systems

By Chris Glaser
Applications Engineer

A 4- to 20-mA current-loop signal is frequently used in industrial environments to transmit measurements across long distances, such as the temperature of a process or the pressure in a tank. This type of signaling is preferred because of its simplicity, noise immunity, safety, and ability to traverse great lengths without data corruption. These current loops are also low-power systems, since relatively low currents transmit the data. Previously, whatever power was not used or lost in the signal transmission was merely dissipated in the transmitter; but now, with modern integrated circuits, even this small amount of power can be harnessed to support necessary functions in these systems.

The basics of 4- to 20-mA current-loop systems

Figure 1 shows a typical 4- to 20-mA current-loop system. A semiregulated 24-VDC source provides power to the current loop and to the transmitter element. The transmitter measures the signal of interest (such as temperature, pressure, and many others) and outputs a 4- to 20-mA current that is proportional to that signal. This current passes through the wiring to a receiver system. There, the current develops a voltage across a resistor that is read by an analog-to-digital converter (ADC) and then further processed. The loop is completed with a connection back to the voltage source that powers the loop.

These current loops provide several benefits in industrial applications:

• The current loops are simple circuits requiring only a crude power supply; a transmitter to make the measurement and source the current; a wire; and a receiver circuit. The power supply needs to provide only enough voltage to overcome the various voltage drops in the system; any excess loop voltage is just dropped across the transmitter. Due to the low current, this is only a small amount of power, which creates little heat.

• The current loop contains only one loop for current flow. Therefore, from Kirchhoff’s current law, the current through all the elements in the loop is equal. This provides high noise immunity, which is critical in industrial environments.

• Safety is provided since the lowest signal level is 4 mA. If something in the loop is broken or becomes disconnected, the receiver reads no current, which demonstrates a fault instead of the lowest signal level.

• As long as the power-supply voltage is high enough to overcome system voltage drops, the desired current representing the measured signal is maintained by the transmitter. Thus, smaller wire gauges with their higher voltage drops and lower cost are used for the interconnections, requiring only an increase to the supply voltage. Most importantly, the relatively large voltage drops permitted across the wiring allow a large amount of wire to be used. This allows physical separation of the instrument being measured and the control room that processes the measurement, providing safety to those in the control room.
Basic system improvement

The excess loop voltage that would otherwise be dropped across the transmitter can be harnessed and used to provide power to the receiver circuitry. Figure 2 shows a power supply inserted into the current loop. This power supply is located in the control room with the receiver circuitry it powers—efficiently converting the excess loop voltage to useful output power.

Since the receiver resistor is no longer ground-referenced, a level-shift circuit is likely necessary to interface with the data converter's input. This very simple circuit is provided by any high-side current-shunt monitor, such as the Texas Instruments (TI) INA138. These devices measure very small sense-resistor voltage drops at a common-mode voltage, thus lowering the necessary voltage drop across the receiver resistor. This allows more voltage for the power supply to harness, reducing the amount of wasted energy.

The power supply typically provides a regulated 3.3 V to power this level shifter, the data converter, and any other low-power devices in the control room. Examples of these devices are a microprocessor from TI's MSP430™ platform to review the incoming data and make decisions, and possibly a low-power RF device from TI's CC430 family to wirelessly transmit the data to other locations. A wireless transmitter is particularly useful if its cost is offset by savings from not having to buy and install the wire required for a particularly lengthy current loop. These devices must use very low power due to the limited amount of excess energy harnessed from the current loop.

Finally, the power supply must be able to operate with such a low-power source—4 mA being the minimum current, and 20 mA being the most it ever gets. Since the voltage generated by this current is the excess voltage in the loop, the power supply must accept a wide input-voltage range and still provide a regulated output. What is more difficult for the power supply is starting up the system from such a current-limited source. Typically, a higher output power is required during start-up to charge up the output capacitors and provide the load with its start-up current. This can be much higher than what the system consumes in normal operation. If the power supply attempts to provide this higher power during start-up, its input power can exceed what the current loop provides. If this happens, the voltage into the power supply drops until the power supply turns off. Then, its input voltage rises again until it turns back on and repeats the process. Such start-up oscillations are a difficult challenge to be overcome when the power supply runs from such small amounts of input power.

Energy-harnessing solution

As just described, the energy-harnessing power supply must have a wide input-voltage range, be able to operate on a very small amount of input power, and avoid start-up oscillations when powered from current-limited sources. TI's TPS62125 is such a power supply, because it operates from a 3- to 17-V input, requires only 11 µA to operate, and has a programmable enable threshold voltage with adjustable hysteresis. The circuit recommended in the TPS62125 datasheet is used with three small modifications:

1. A 15-V Zener diode is added on the input to the device to protect it in cases where the excess loop voltage applied to it exceeds its 17-V rating. If a lower-voltage current-loop system is used, this diode may not be necessary. A Zener diode that clamps at a maximum of 15.6 V gives good results.

2. Bulk capacitance is added on the input to the device to store enough energy for start-up and load changes. Depending on the load's power demands during start-up, this capacitor may not be needed at all. A total of about 200 µF provides a smooth start-up for the example load, which draws 50 mA at 3.3 V for 30 ms at start-up, and 10 mA once started. The bulk capacitance also provides stored energy for periodic higher power demands that might occur, such as for measuring a temperature, taking a reading with the data converter, or transmitting the data via an antenna.
3. The device's enable threshold voltage is adjusted such that the device turns on when its voltage reaches 12 V. The device is programmed to turn off if its input drops down to 4 V. Once enabled, the device efficiently converts the harnessed energy to its 3.3-V output.

For an example power-supply solution, 4 V was chosen as the turn-off voltage in order to provide the required headroom of input voltage to output voltage, allowing the device to keep the 3.3-V output regulated. A turn-on voltage of 12 V was chosen for system considerations. It was assumed that the 24-V source varied between 18 and 30 V and that the voltage dropped in the current-loop sum to a maximum of 6 V, leaving a minimum of 12 V applied to the device under worst-case conditions. Thus, 12 V was chosen as the point at which to start the power supply, since it is the minimum voltage that would ever be applied to the device. Also, 12 V achieved sufficient separation between the turn-on and turn-off voltages such that the power supply started into its higher-powered load without start-up oscillations.

The described power-supply solution starts up from and runs off of TI’s XTR111, a 4- to 20-mA current-loop transmitter delivering less than 4 mA at all times. Figure 3 shows this solution's start-up. Once the transmitter is enabled, it begins sourcing current, which raises the input voltage to the 12-V turn-on point of the power supply. The power supply's output ramps up into regulation and immediately supplies the load's start-up current of 50 mA. This slightly reduces the input voltage of the power supply, but the supply keeps regulating the output voltage because of its wide voltage range and bulk input capacitor. After the 30-ms duration of the load's start-up power draw, the load current reduces to a steady-state, 10-mA level. The input voltage rises further and is clamped by the Zener diode at a safe 15-V level. As already noted, the current provided by the current loop remains below 4 mA at all times.

Figure 4 shows a close-up version of Figure 3. The power supply draws stored energy from the bulk capacitor to supply the start-up load current’s demands, while the current loop provides less than 4 mA at all times. Drawing this energy reduces the input voltage by about 2 V, which is acceptable for this power supply.
Finally, the energy-harnessing power supply stores enough energy in the bulk capacitor and operates over a wide enough input-voltage range to supply continuous pulses of power to the load. Figure 5 shows the supply providing 20 mA to the load for a duration of 100 ms every second, with the supply’s output voltage remaining regulated.

Conclusion

In 4- to 20-mA current-loop systems, energy that otherwise would be wasted can be harnessed for useful purposes. This energy powers data converters and microprocessors that the control room needs to process the incoming data from the current loop, but it can also power low-power RF transmitters that extend the application possibilities of 4- to 20-mA current loops, as well as potentially save costs in such systems by reducing the amount of wire required. A power supply that has a wide input-voltage range, operates on very small amounts of power, and starts from current-limited sources without oscillations enables the energy to be harnessed and the continued usefulness of these systems.

Related Web sites

- power.ti.com
- www.ti.com/cc430
- www.ti.com/msp430

Replace `partnumber` with INA138, TPS62125, or XTR111.
LDO noise examined in detail

By Masashi Nogawa
Senior Systems Engineer, Linear Regulators

Introduction
Requirements and expectations for telecommunication systems continue to evolve as complexity and reliability of the communication channels continue to increase. These communication systems rely heavily on high-performance, high-speed clocking and data-converter devices. The performance of these devices is highly dependent on the quality of system power rails. A clock or converter IC simply cannot achieve top performance when powered by a dirty power supply. Just a small amount of noise on the power supply can cause dramatic negative effects on the performance. This article examines a basic LDO topology to find its dominant noise sources and suggests ways to minimize its output noise.

A key parameter indicating the quality of a power supply is its noise output, which is commonly referred by the RMS noise measurement or by the spectral noise density. For the lowest RMS noise or the best spectral noise characteristics, a linear voltage regulator like a low-dropout voltage regulator (LDO) always has an advantage over a switching regulator. This makes it the power supply of choice for noise-critical applications.

Basic LDO topology
A simple linear voltage regulator consists of a basic control loop where a negative feedback is compared to an internal reference in order to provide a constant voltage—regardless of changes or perturbations in the input voltage, temperature, or load current.

Figure 1 shows a basic block diagram of an LDO regulator. The red arrow indicates the negative-feedback signal path. The output voltage, \(V_{\text{OUT}} \), is divided by feedback resistors \(R_1 \) and \(R_2 \) to provide the feedback voltage, \(V_{\text{FB}} \). \(V_{\text{FB}} \) is compared to the reference voltage, \(V_{\text{REF}} \), at the negative input of the error amplifier to supply the gate-drive voltage, \(V_{\text{GATE}} \). Finally, the error signal drives the output transistor, NFET, to regulate \(V_{\text{OUT}} \).

A simplified analysis of noise begins with Figure 2. The blue arrow traces a subset of the loop represented by a common amplifier variation known as a voltage follower or power buffer. This voltage-follower circuit forces \(V_{\text{OUT}} \) to follow \(V_{\text{REF}} \). \(V_{\text{FB}} \) is the error signal referring to \(V_{\text{REF}} \). In steady state, \(V_{\text{OUT}} \) is bigger than \(V_{\text{REF}} \), as described in Equation 1:

\[
V_{\text{OUT}} = \left(1 + \frac{R_1}{R_2}\right) \times V_{\text{REF}},
\]

where \(1 + R_1/R_2\) is the gain that the error amplifier must have to obtain the steady-state output voltage (\(V_{\text{OUT}} \)).
Suppose the voltage reference is not ideal and has an effective noise factor, $V_{N}\text{(REF)}$, on its DC output voltage (V_{REF}). Assuming all circuit blocks in Figure 2 are ideal, V_{OUT} becomes a function of the noise source. Equation 1 can be easily modified to account for the noise source, as described in Equation 2:

$$V_{\text{OUT}} + V_{N}\text{(OUT)} = \left(1 + \frac{R_{1}}{R_{2}}\right) \times (V_{\text{REF}} + V_{N}\text{(REF)}), \quad (2)$$

where $V_{N}\text{(OUT)}$ is the independent noise contribution to the output, expressed by Equation 3:

$$V_{N}\text{(OUT)} = \left(1 + \frac{R_{1}}{R_{2}}\right) \times V_{N}\text{(REF)} \quad (3)$$

From Equations 2 and 3, it’s clear that a higher output voltage generates higher output noise. The feedback resistors, R_{1} and R_{2}, set (or adjust) the output voltage, thereby setting the output noise voltage. For this reason, many LDO devices characterize the noise performance as a function of output voltage. For example, $V_{N} = 16 \mu \text{V RMS} \times V_{\text{OUT}}$ illustrates a standard form describing the output noise.

Dominant sources of LDO output-voltage noise

For most typical LDO devices, a dominant source of output noise is the amplified reference noise in Equation 3. This is generally true even though the total output noise is device-dependent. Figure 3 is a complete block diagram showing each equivalent-noise source corresponding to its respective circuit element. Since any device with current flowing through it is a potential noise source, every single component in Figure 1 and Figure 2 is a noise source.

Figure 4 is redrawn from Figure 3 to include all equivalent-noise sources referenced at the OUT node. The complete noise equation is

$$V_{N}\text{(OUT)} = V_{N}\text{(AMP)} + V_{N}\text{(FET)} + \left(1 + \frac{R_{1}}{R_{2}}\right) \times (V_{N}\text{(REF)} + V_{N}(R_{1}) + V_{N}(R_{2})). \quad (4)$$

In most cases, because the reference-voltage block, or bandgap circuit, consists of many resistors, transistors, and capacitors, $V_{N}\text{(REF)}$ tends to dominate the last three noise sources in this equation where $V_{N}\text{(REF)} >> V_{N}(R_{1})$ or $V_{N}\text{(REF)} >> V_{N}(R_{2})$. Thus, Equation 4 can be simplified to

$$V_{N}\text{(OUT)} = V_{N}\text{(AMP)} + V_{N}\text{(FET)} + \left(1 + \frac{R_{1}}{R_{2}}\right) \times V_{N}\text{(REF)}. \quad (5)$$
For higher-performance LDO devices, it is common to add a noise-reduction (NR) pin to shunt reference noise to ground. Figure 5 illustrates how the NR pin works to reduce noise. Since it is known that $V_{N(REF)}$ is the dominant output-noise source, an RC filter capacitor, C_{NR}, is inserted between the reference-voltage block (V_{REF}) and the error amplifier to reduce this noise. This RC filter reduces the noise by an attenuation function of

$$G_{RC}(f) = \frac{1}{\sqrt{1 + (f/f_p)^2}} < 1,$$

where

$$f_p = \frac{1}{2\pi R_{NR} C_{NR}}.$$

The amplified reference noise is therefore reduced to $(1 + R1/R2) \times V_{N(REF)} \times G_{RC}$, and Equation 5 then becomes

$$V_{N(OUT)} = V_{N(AMP)} + V_{N(FET)} + \left(1 + \frac{R1}{R2}\right) \times V_{N(REF)} \times G_{RC},$$

Equation 7

In the real world, all control signal levels are frequency-dependent, including the noise signal. If the error amplifier has limited bandwidth, the high-frequency reference noise ($V_{N(REF)}$) is filtered by the error amplifier in a way similar to using an RC filter. But in reality an error amplifier tends to have a very wide bandwidth, so the LDO device has very good power-supply ripple rejection (PSRR), which is another key performance parameter of high-performance LDOs. To satisfy this conflicting requirement, IC vendors settle on having a wide-bandwidth error amplifier for the best PSRR over less noise. This decision leads to using an NR pin function if low noise is also mandatory.

Controlling reference noise in a typical circuit

Amplified reference noise

The Texas Instruments (TI) TPS74401 LDO was used for testing and measurements. The common setup parameters are shown in Table 1. Please note that a soft-start capacitor, C_{SS}, in the TPS74401 datasheet\(^1\) is referred to as a noise-reduction capacitor, C_{NR}, in this article for easier reading.

First, the effect of the amplifier gain was examined with a negligibly small C_{NR}. Figure 6 shows RMS noise versus output-voltage settings. As discussed earlier, the dominant noise source, $V_{N(REF)}$, is amplified by the ratio of the feedback resistors $R1$ and $R2$. Equation 7 can be modified into the form of Equation 8:

$$V_{N(OUT)} = V_{N(Other)} + \left(1 + \frac{R1}{R2}\right) \times V_{N(REF)} \times G_{RC},$$

where $V_{N(Other)}$ is the sum of all other noise sources.

Table 1. Setup parameters

<table>
<thead>
<tr>
<th>V_{IN}</th>
<th>I_{OUT}</th>
<th>C_{OUT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OUT(Target)} + 0.3$ V</td>
<td>0.5 A</td>
<td>10 μF</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>R1</td>
<td>R2</td>
</tr>
<tr>
<td>3.3 V</td>
<td>31.25 kΩ</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>1.8 V</td>
<td>12.5 kΩ</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>1.2 V</td>
<td>5 kΩ</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>0.8 V</td>
<td>0 Ω (short OUT node to FB node)</td>
<td>Open circuit</td>
</tr>
</tbody>
</table>

If Equation 8 is fitted to a linear curve of the form $y = ax + b$ as shown by the red dotted line in Figure 6, $V_{N(REF)}$ (the slope term) can be estimated as 19 μV$_{RMS}$, and $V_{N(Other)}$ (the y-intercept term) as 10.5 μV$_{RMS}$. As explained
later under “Effect of the noise-reduction (NR) pin,” the value of C_{NR} was chosen as 1 pF to minimize the RC-filter effect to a negligible level, and G_{RC} is treated as being equal to 1. In this situation, the basic assumption is that $V_{N(REF)}$ is the dominant noise source.

Note that the minimum noise occurs when the OUT node is shorted to the FB node, making the amplifier gain $(1 + R1/R2)$ equal to 1 ($R1 = 0$) in Equation 8. Figure 6 shows this minimum-noise point to be approximately 30 μV RMS.

Canceling amplified reference noise

This section explains a very effective technique for achieving a configuration with minimum output noise. A feedforward capacitor, C_{FF}, forwards (bypasses) output noise around $R1$ as illustrated in Figure 7. This bypass or shorting action prevents the reference noise from being increased by the gain of the error amplifier at frequencies higher than the resonant frequency, $f_{Resonant}$, of $R1$ and C_{FF}, where

$$f_{Resonant} = \frac{1}{2\pi \times R1 \times C_{FF}}.$$

The output noise becomes

$$V_{N(OUT)} = V_{N(Other)} + \left[1 + \frac{R1}{2\pi \times f \times C_{FF}}\right] \times G_{RC} \times V_{N(REF)}. \tag{9}$$

Figure 8 shows the changes in RMS noise relative to feedforward capacitance (C_{FF}) and different output-voltage settings. Note that each point along each RMS plot represents the statistical mean of the integrated noise across the entire given bandwidth of interest for the circuit conditions described. As expected, all curves converge toward the minimum output noise of approximately 30 μV RMS; in other words, the noise converges to $V_{N(REF)} + V_{N(Other)}$ due to the effect of C_{FF}.

Figure 8 illustrates that, for a C_{FF} value greater than 100 nF, the amplifier gain of $1 + R1/R2$ in Equation 8 is canceled. This is true only because the low-frequency noise does not contribute significantly to the overall statistical mean of the RMS calculation, even though that low-frequency noise is not completely canceled by C_{FF}. In order to see the actual effect of C_{FF}, it is necessary to look...
at the actual spectral-density plot of the noise voltage (Figure 9). Figure 9 shows that there is minimum noise at the curve of \(C_{FF} = 10 \mu F \) but that all curves approach this minimum noise curve above certain frequencies. Those certain frequencies correspond to the resonant pole frequencies determined by the \(R1 \) and \(C_{FF} \) values. See Table 2 for the calculated \(C_{FF} \) values with an \(R1 \) value of 31.6 kΩ.

Table 2. Calculated resonant frequencies

<table>
<thead>
<tr>
<th>(C_{FF}) (µF)</th>
<th>(f_{Resonant}) (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>504</td>
</tr>
<tr>
<td>1</td>
<td>5.04</td>
</tr>
<tr>
<td>100</td>
<td>50.4</td>
</tr>
<tr>
<td>10</td>
<td>0.504</td>
</tr>
</tbody>
</table>

Figure 9 shows that the curve of \(C_{FF} = 100 \) nF rolls off around 50 Hz. The curve for \(C_{FF} = 1 \) nF rolls off around 5 kHz, but the resonant frequency for when \(C_{FF} = 10 \) pF is obscured by the overall internal effects on the LDO noise. Given these observations of Figure 9, it is assumed for the rest of this discussion that \(C_{FF} = 10 \) µF to minimize noise.

Effect of the noise-reduction (NR) pin

\(G_{RC} \) decreases when the RC filter capacitor (\(C_{NR} \)) is used between the NR pin and ground. Figure 10 shows RMS noise as a function of \(C_{NR} \) (see Figure 5). The difference between the two curves is examined later in the third paragraph under “Other technical considerations.”

A wider integration range of 10 Hz to 100 kHz is used in Figure 10 to capture the performance difference in the low-frequency region. With \(C_{NR} = 1 \) pF, both curves show very high RMS noise values. Although not shown in Figure 10, there is no RMS noise difference whether \(C_{NR} = 1 \) pF or not. This is why \(G_{RC} \) is treated as being equal to 1 in the earlier section, “Amplified reference noise.”

As expected, RMS noise gets lower as \(C_{NR} \) increases, and converges toward the minimum output noise of approximately 12.5 µV\text{RMS} when \(C_{NR} = 1 \) µF.

For a \(C_{FF} \) of 10 µF, the amplifier gain \((1 + R1/R2)\) can be ignored. Thus, Equation 8 can be simplified to

\[
V_{N(OUT)} = V_{N(Other)} + V_{N(REF)} \times G_{RC}.
\]

As seen, \(V_{N(Other)} \) is not affected by \(C_{NR} \). Therefore \(C_{NR} \) remains 10.5 µV\text{RMS} as was determined by the data-curve fit in Figure 6. Equation 10 can be expressed as

\[
V_{N(OUT)} = V_{N(REF)} \times G_{RC} + 10.5 \mu V.
\]

Next, it is important to determine the effect of noise-reduction capacitance on \(G_{RC} \). The minimum measured noise along the curve in Figure 10 allows Equation 10 to be rewritten as

\[
V_{N(OUT)} = 12.5 \mu V = V_{N(REF)} \times G_{RC} + 10.5 \mu V,
\]

where \(V_{N(REF)} \times G_{RC} \) is solved to equal 2 µV\text{RMS}. Adding \(C_{NR} \) decreases the reference noise from 19.5 µV\text{RMS} to 2 µV\text{RMS}, which is to say that \(G_{RC} \) has decreased from unity to an average of 0.1 (2/19.5) over the frequency range of 10 Hz to 100 kHz.
Figure 11 shows how C_{NR} reduces noise in the frequency domain. Just like the smaller C_{FF} values in Figure 9, a smaller C_{NR} starts working at a higher frequency. Note that the biggest C_{NR} value, 1 µF, shows the lowest noise. Though the curve for $C_{\text{NR}} = 10$ nF shows almost minimum noise close to the curve for $C_{\text{NR}} = 1$ µF, the 10-nF curve shows a small hump between 30 and 100 Hz.

The curves in Figure 8, where $C_{\text{NR}} = 1$ pF, can be improved to those in Figure 12, where $C_{\text{NR}} = 1$ µF. Figure 8 shows little difference in RMS noise between $C_{\text{FF}} = 100$ nF and $C_{\text{FF}} = 10$ µF, but Figure 12 clearly shows a difference.

In Figure 12, regardless of the output voltage, values of $C_{\text{FF}} = 10$ µF and $C_{\text{NR}} = 1$ µF bring the lowest noise, 12.5 µV$_{\text{RMS}}$, which is to say that the minimum G_{RC} value (in other words, the maximum effect of the RC filter) is 0.1. This value of 12.5 µV$_{\text{RMS}}$ is the noise floor of the TI device TPS74401.

When a new LDO device is used for noise-sensitive applications, it is good practice to figure out a noise floor unique to the device by using large C_{FF} and C_{NR} capacitors. Figure 12 indicates that an RMS-noise curve converges at the noise-floor value.
Other technical considerations

Slow-start effect of noise-reduction capacitor
Besides its ability to reduce noise, an RC filter is also known to work as an RC delay circuit. Therefore, a big C_{NR} value causes a big delay of the regulator’s reference voltage.

Slow-start effect of feedforward capacitor
The same mechanism whereby C_{FF} bypasses the AC signal across the R1 feedback resistor also bypasses the output-voltage feedback information when V_{OUT} is ramping up after an enable event. Until C_{FF} is fully charged, an error amplifier takes a bigger negative feedback signal, resulting in a slow start.

Why a higher V_{OUT} value results in less RMS noise
In Figures 8 and 10, the curve for $V_{OUT} = 3.3$ V shows less noise than that for $V_{OUT} = 0.8$ V. Since it is known that a higher voltage setting can increase the reference noise, this looks odd. The explanation is that, because C_{FF} is connected to the OUT node, C_{FF} has the effect of increasing the output-capacitor value in addition to bypassing the noise signal across resistor R1. Figure 12 shows that, as the reference noise gets minimized, this phenomenon can’t be observed.

RMS-noise value
Because the noise floor of the TPS74401 is $12.5 \mu V_{RMS}$, this device is one of the lowest-noise LDOs on the market. This absolute value of $12.5 \mu V_{RMS}$ can be a good reference to use in designing a regulator with very low noise.

Conclusion
The basic noise of an LDO device and how to minimize it have been examined, including:

- How each circuit block contributes to output noise
- How the reference voltage is the dominant source of noise, amplified by an error amplifier
- How to cancel the amplified reference noise
- How an NR function works

Careful selection of a noise-reduction capacitor (C_{NR}) and a feedforward capacitor (C_{FF}) can minimize LDO output noise to a noise-floor level unique to the device. With this noise-minimized configuration, an LDO device keeps the noise-floor value regardless of the parameters that usually affect noise in non-optimized configurations.

Due to the expected side effect of a slow start when C_{NR} and C_{FF} are added to the circuit, values for these capacitors must be chosen that will provide a fast enough ramp-up.

The method described in this article is already being used to optimize the noise of TI’s TPS7A8101 LDO. On page 10 of the TPS7A8101 datasheet, the device shows a constant noise value no matter what parameter is changed.

References
For more information related to this article, you can download an Acrobat® Reader® file at www.ti.com/lit/litnumber and replace “litnumber” with the TI Lit. # for the materials listed below.

<table>
<thead>
<tr>
<th>Document Title</th>
<th>TI Lit. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. “3.0A ultra-LDO with programmable soft-start,” TPS74xx Datasheet</td>
<td>SBVS066M</td>
</tr>
<tr>
<td>2. “Low-noise, wide-bandwidth, high PSRR, low-dropout 1-A linear regulator,” TPS7A8101 Datasheet</td>
<td>SBVS179A</td>
</tr>
</tbody>
</table>

Related Web sites
- www.ti.com/ldo-ca
- www.ti.com/product/TPS7A8101
- www.ti.com/product/TPS74401
Simple open-circuit protection for boost converters in LED driver applications

John Caldwell, Analog Applications Engineer, and Gregory Amidon, Analog Field Applications Engineer

Introduction
One method for driving high-brightness LEDs is to modify the standard boost-converter topology to drive a constant current through the load. However, there is a major problem with this implementation in that an open-circuit fault in the LED string removes the pathway for the load current. This creates the potential to damage the circuit due to a high-output voltage from the converter, which operates without feedback in this condition. This article presents a simple method of robust open-circuit fault protection that uses a Zener diode and a resistor with negligible changes in overall efficiency. The functionality of the topology is demonstrated by configuring a high-voltage boost converter as a constant-current driver for a string of three high-brightness white LEDs and producing a simulated fault condition at the output. The presented circuit clamps the output voltage to a safe level and reduces the output current in the protected state.

Typical boost converter for high-brightness LEDs
Boost converters are commonly modified for driving high-brightness LEDs in single-cell lithium-ion (Li-Ion), alkaline, and other applications where the voltage of the LED string exceeds the battery or rail voltage. In the standard boost configuration, the output voltage, \(V_{\text{OUT}} \), is monitored by using a voltage divider to produce a feedback voltage, \(V_{\text{FB}} \), for the circuit. The converter regulates the output voltage to keep \(V_{\text{FB}} \) equal to the on-chip reference voltage, \(V_{\text{REF}} \). This topology can be adapted to maintain a constant current rather than a constant voltage by replacing the upper resistor in the feedback-voltage divider with the load, as represented by the LED string in Figure 1. The load current is dependent on the boost converter's on-chip reference voltage and is determined by

\[
I_{\text{LOAD}} = \frac{V_{\text{REF}}}{R_{\text{SET}}}, \tag{1}
\]

A major problem with this simple implementation is that an open-circuit fault in the LED string removes the pathway for the load current. Without the load current flowing across the feedback resistor, \(R_{\text{SET}} \), \(V_{\text{FB}} \) is pulled to ground. In response, the boost converter increases its operating duty cycle to the maximum duty cycle possible in an effort to maintain the correct voltage on the feedback (FB) pin. Using the idealized transfer function of a boost converter reveals that a high-output voltage (\(V_{\text{OUT}} \)) can be produced when the converter approaches its maximum duty cycle. Consider a boost converter with a typical maximum duty

Figure 1. High-voltage boost converter configured as an LED driver without open-circuit protection
cycle of 90% (a common value) and a 5-V input:

$$V_{OUT} = \frac{1}{1-D} \times V_{IN} = \frac{1}{1-0.9} \times 5 = 50 \text{ V}$$ \hspace{1cm} (2)

The high voltage at the converter’s output creates the potential for multiple failures. This voltage may exceed the rating of internal or external switching devices or passive components. It may also represent a potential hazard to the user and could damage a load upon connection if the circuit is being operated without one.

Protection circuit

An alternate pathway for the load current must exist in the event of an open-circuit condition. While placing a resistor in parallel with the LED string provides a pathway, it is not ideal because it causes a significant efficiency loss. An alternative configuration (Figure 2) consists of a Zener diode and a resistor and offers suitable system protection with negligible losses in efficiency.

When the load-current pathway is removed, the output voltage increases until the Zener diode, ZD1, turns on and current flows through R_{PRO} and R_{SET} to ground. The output current is determined by the series combination of R_{PRO} and R_{SET} because V_{FB} is driven to equal the internal bandgap reference, V_{REF}. Therefore, the output protection current defaults to

$$I_{PRO} = \frac{V_{REF}}{R_{SET} + R_{PRO}}.$$ \hspace{1cm} (3)

A voltage is chosen for the Zener diode such that no current flows through it during normal circuit operation.

To ensure that the diode is completely off during normal operation, the voltage chosen should be at least 2 V higher than the maximum load voltage but still less than the maximum output voltage specified for the boost converter. This also decreases the chance that the circuit designer will have to increase the voltage rating of the output capacitors, C2 and C3, and the catch diode, SD1. The output voltage is clamped to the sum of the Zener diode’s voltage and the reference voltage:

$$V_{OUT} = V_{ZD1} + V_{REF}$$ \hspace{1cm} (4)

R_{PRO} is selected by balancing the error induced to the LED current and the power dissipated during circuit protection. In practice, the value selected for R_{PRO} should be as large as possible in order to minimize power dissipation in the Zener diode:

$$P_{ZD1} = I_{PRO} \times V_{ZD1}$$ \hspace{1cm} (5)

The error introduced into the circuit is due to the leakage current through the Zener diode, I_{ZL}, as well as the bias current, I_{FB}, of the error amplifier internal to the boost converter. Equation 6 is a revised transfer function that includes these errors:

$$I_{LOAD} = \frac{V_{REF} - I_{ZL} \left(R_{PRO} + R_{SET}\right) - I_{FB} \left(R_{PRO} + R_{SET}\right)}{R_{SET}}$$ \hspace{1cm} (6)

Because these two currents are normally less than 1 µA, the error introduced is very small and can be ignored in most implementations.
Demonstration
As an application example, the Texas Instruments TPS61170 boost converter IC was configured as a constant-current LED driver. This is an ideal boost converter for driving a string of high-brightness LEDs in applications such as backlighting or flashlights. The 3- to 18-V input range allows a wide range of power sources, such as 2S-to-4S Li-Ion or 3S-to-12S alkaline battery packs, USB, or 12-V rail power.

The boost converter was configured to drive three high-brightness white LEDs with a current of 260 mA. With a typical reference voltage of 1.229 V, \(R_{SET} \) was calculated by using the simplified version of the load current in Equation 7:

\[
R_{SET} = \frac{V_{REF}}{I_{LOAD}} = \frac{1.229 \text{ V}}{260 \text{ mA}} = 4.73 \Omega
\]

A value of 1 mA was chosen as a reasonable protection current \(I_{PRO} \) to calculate the value of \(R_{PRO} \):

\[
R_{PRO} = \frac{V_{REF}}{I_{PRO}} = \frac{1.229 \text{ V}}{1 \text{ mA}} = 4.7 \Omega
\]

\[
1224.3 \Omega \rightarrow 1.2 \text{ k}\Omega
\]

A 15-V Zener diode was chosen for ZD1 in order to exhibit minimal leakage at the expected load voltage of approximately 10 V, while also clamping the output to a value far below the maximum allowable output voltage of the boost converter, 40 V. The output voltage was clamped to the Zener diode's voltage \(V_{ZD1} \), which was summed with the converter's reference voltage:

\[
V_{OUT} = V_{ZD1} + V_{REF} = 15 \text{ V} + 1.229 \text{ V} = 16.229 \text{ V}
\]

With the load current and protection resistors selected, the deviation from the expected load current was calculated (see Equation 10 below). The datasheet value of 200 nA was used for the feedback bias current \(I_{FB} \), and a value of 1 µA was used for the expected leakage current through the Zener diode, with a \(V_{OUT} \) of approximately 10 V.

Recall that the intended load current for the circuit was 260 mA. As can be seen, once the theoretical values for components are replaced by available values in Equation 10, they contribute far more error than does the protection circuit itself.

To test the protection circuit's operation, the LED string was replaced with a resistor decade box set to 38 Ω to mimic the voltage across the LED string at the designed load current. An open-circuit fault was simulated by rapidly changing the load resistance from 38 Ω to 1038 Ω. As illustrated in Figure 3, the change in the output current (green trace) signaled the sudden change in load impedance. To compensate, the output voltage of the TPS61170 (yellow trace) rose to re-establish the designed load current. However, rather than continuing this trend until reaching its maximum duty cycle, the output voltage stabilized to the clamp voltage of approximately 16 V.

Conclusion
A simple method to provide open-circuit protection to a boost converter configured as a constant-current LED driver was presented. Consisting of a Zener diode and an additional resistor, this circuit limits the output voltage to a safe level while simultaneously reducing the output current when an open-circuit fault occurs at the load. Furthermore, this approach contributes negligible error to the load-current calculations and negligible loss of efficiency during normal circuit operation. The functionality of the protection circuit was demonstrated by configuring a boost converter as an LED driver and adding a 15-V Zener diode and a 1.2-kΩ resistor for output protection. The demonstration circuit exhibited the expected output behavior in a simulated load fault condition.

Related Web sites
- power.ti.com
- www.ti.com/product/TPS61170

\[
I_{LOAD} = \frac{1.229 \text{ V} - 1 \mu A(1.2 \text{ k}\Omega + 4.7 \Omega) - 200 \text{nA}(1.2 \text{ k}\Omega + 4.7 \Omega)}{4.7 \Omega} = 261 \text{ mA}
\]
How to design an inexpensive HART transmitter

By Thomas Kugelstadt
Applications Manager

Process measurement and control devices can communicate via the conventional 4- to 20-mA current loop by utilizing the highway addressable remote transducer (HART) protocol. This protocol uses frequency-shift keying (FSK) with the frequencies of 1200 Hz and 2200 Hz. Here one 1200-Hz cycle represents a logic 1, while two 2200-Hz cycles represent a logic 0. Because the average value of the FSK waveform is always zero, the analog 4- to 20-mA signal is not affected.

Ideally, the FSK signal consists of sine waves of the two frequencies superimposed onto the DC measurement signal. However, generating phase-continuous FSK sine waves is a rather complex matter. Therefore, in order to simplify the generation of HART signal waveforms, the physical layer of the HART specification defines parametric limits into which the amplitude, shape, and slew rate of a more generalized waveform must fall. In this case, a trapezoidal waveform, with the limiting values detailed in Figure 1, suits this application well.

![Figure 1. Minimum and maximum values of trapezoidal HART current waveform](image-url)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{pp}</td>
<td>0.4 V</td>
<td>0.6 V</td>
</tr>
<tr>
<td>I_{pp}</td>
<td>0.8 mA</td>
<td>1.2 mA</td>
</tr>
<tr>
<td>Slew Rate at 1200 Hz</td>
<td>1 V/ms</td>
<td>4 V/ms</td>
</tr>
<tr>
<td>Slew Rate at 2200 Hz</td>
<td>2 mA/ms</td>
<td>8 mA/ms</td>
</tr>
</tbody>
</table>
The HART transmitter in Figure 2 provides a simple and inexpensive solution that generates a trapezoidal HART waveform, superimposes it onto a variable DC level, and subsequently converts the resulting output voltage into the loop current.

The HART FSK signal, commonly generated by a local microcontroller unit (MCU), is applied to the input of a first NAND gate, G1. A second output of the MCU’s general-purpose I/O port serves as an active-high ENABLE signal. G1 controls two further NAND gates, G2 and G3, whose outputs connect together via high-impedance voltage dividers, R1 and R2.

A second voltage divider, consisting of R4 and R5, splits the 5-V supply into a reference voltage of $V_{\text{REF}} = V_{\text{CC}}/2$, or 2.5 V. As long as ENABLE is low, G2’s output is low and G3’s output is high. Due to high-impedance loading, the NAND outputs provide rail-to-rail capability; and, with $R_1 = R_2$, the input voltage at A1’s non-inverting input, V_{IN}, is also 2.5 V.

When ENABLE is taken high, the outputs of G2 and G3 toggle in phase with each other, thus creating a small square wave at V_{IN} that swings symmetrically about V_{REF}. The peak-to-peak amplitude of V_{IN} is given by

$$V_{\text{IN(PP)}} = V_0 \times \frac{R_3}{R_3 + R_1 || R_2},$$

where V_0 is the positive 5-V supply, and $R_1 || R_2$ is the parallel combination of R_1 and R_2.

Inserting the resistor values from Figure 2 into the preceding equation yields an input-voltage swing of $V_{\text{IN(PP)}} = 200$ mV, making V_{IN} swing between 2.4 and 2.6 V. When V_{IN} rises to 2.6 V, A1’s output goes immediately into positive saturation and charges C_3 via R_6 and R_7. The actual HART voltage on C_3 (V_{HART}) rises linearly until it reaches 2.6 V. At this point, amplifier A1 rapidly exits saturation and acts as a voltage follower, thus holding V_{HART} at 2.6 V. When V_{IN} decreases to 2.4 V, A1’s output goes into negative saturation and discharges C_3 via R_6 and R_7. V_{HART} then ramps down linearly until it reaches 2.4 V, at which point A1 comes out of saturation and again acts as a voltage follower, holding V_{HART} at 2.4 V.

The resulting trapezoidal waveform is equal in amplitude to V_{IN} and swings symmetrically about V_{REF}. Its slew rate is determined by

$$\frac{dV}{dt} = \frac{1}{C_3} \left(V_{\text{SAT}} - V_{\text{HART}} \right) / \left(R_6 + R_7 \right),$$

where V_{SAT} is the positive or negative output-saturation voltage of A1.

Because the AC content of V_{HART} is small compared to V_{SAT}, V_{HART} can be approximated by its quiescent level, V_{REF}. Also, A1’s rail-to-rail-output capability in combination with the high-impedance loading through R_6 yields output-saturation levels of 5 V and 0 V. Given that R_7 is much smaller than R_6, the preceding expression simplifies to

$$\frac{dV}{dt} = \frac{\pm V_{\text{REF}}}{R_6 \times C_3}.$$

If the component values for R_6 and C_3 from Figure 2 are inserted, the trapezoid’s slew rate results in ±1.25 V/ms.

Scaling the peak-to-peak amplitude of V_{HART} (200 mV) to a HART peak-to-peak current signal of 1 mA makes the voltage slew rate of 1.25 V/ms equivalent to a current slew rate of 6.25 mA/ms in the HART current signal, which perfectly fits within the given limits of Figure 1.

R_7 is required to isolate A1’s output from the large capacitive load, C_3, in order to maintain closed-loop stability. The required value depends on A1’s unity-gain bandwidth, f_T.

Figure 2. Low-cost HART transmitter

Interface (Data Transmission)

Texas Instruments Incorporated

Analog Applications Journal

4Q 2012

www.ti.com/aaj

High-Performance Analog Products
and the values of R_6 and C_3. A good approximation for R_7 is accomplished with

$$R_7 = \frac{1 + \sqrt{1 + 8\pi f_T \times R_6 \times C_3}}{2\pi f_T \times C_3}. \quad (1)$$

A_1 must have a reasonably wide frequency response and be able to slew significantly faster than the HART trapezoid. The OPA2374, a low-cost dual operational amplifier from Texas Instruments (TI), provides a sufficiently fast slew rate of 5 V/µs and a unity-gain bandwidth of $f_T = 6.5$ MHz. In addition, the amplifier outputs have rail-to-rail drive capability with a typical quiescent current of 585 µA per amplifier.

The second amplifier, A_2, superimposes the HART signal onto a variable DC voltage, V_{DC}. The voltage at A_2’s output, V_{OUT}, becomes

$$V_{OUT} = \left(V_{REF} \times \frac{R_{10}}{R_9 + R_{10}} + V_{DC} \times \frac{R_9}{R_9 + R_{10}} \right) \times \left(1 + \frac{R_{11}}{R_8} \right) - V_{HART} \times \frac{R_{11}}{R_8}. \quad (2)$$

Making R_8 to R_{11} equal in value simplifies this equation to

$$V_{OUT} = V_{REF} + V_{DC} - V_{HART}. \quad (3)$$

Because V_{HART} consists of a 200-mV trapezoid swinging symmetrically with V_{REF}, the output of A_2 contains only the small HART waveform riding on the variable DC level. Feeding V_{OUT} into TI’s XTR115 voltage-to-current converter makes each 200 mV of V_{DC} equivalent to 1 mA of current. Thus, varying V_{DC} from 0.8 V to 4.0 V is equivalent to a 4- to 20-mA current range.

Resistors R_8 to R_{11} should be large enough to minimize the loading effects on C_3’s charging current but not so large as to introduce errors through A_2’s input-offset current. Well-matched resistor values remove V_{REF} entirely from V_{OUT} so that $V_{OUT} = V_{DC} \pm 100$ mV. Therefore a mismatch in R_9 and R_8 or variations in the voltage supply have little effect on V_{OUT}’s DC content.

The XTR115 is a two-wire, precision, current-output converter that transmits analog 4- to 20-mA signals over an industry-standard current loop. The device provides accurate current scaling as well as functions for limiting output current. Its on-chip 5-V voltage regulator is used to power the external circuitry. To ensure control of the output current, I_{OUT}, the current-return pin, I_{RET}, serves as a local ground and senses any current used in the external circuitry. Its input stage has a current gain of 100, which is set by the two laser-trimmed gain resistors, R_{G1} and R_{G2}:

$$\text{Gain} = 1 + \frac{R_{G1}}{R_{G2}}. \quad (4)$$

Therefore, an input current, I_{IN}, produces an output current, I_{OUT}, equal to $I_{IN} \times 100$. With the voltage potential at I_{IN} being 0 (referenced to I_{RET}), the resistor value required to convert an input voltage into a defined output current is calculated with

$$R_{IN} = \frac{V_{IN}}{I_{OUT}} = \frac{V_{IN}}{I_{OUT}} \times \text{Gain}. \quad (5)$$

Converting the 200-mVpp HART voltage into a 1-mA current thus requires an input resistance of

$$R_{IN} = \frac{200 \text{ mV}}{1 \text{ mA}} \times 100 = 20 \text{ kΩ}. \quad (6)$$

In addition, R_{IN} defines the input-voltage range for a 4- to 20-mA current range with

$$V_{DC_{\text{min}}} = \frac{R_{IN} \times I_{OUT_{\text{min}}}}{\text{Gain}} = \frac{20 \text{ kΩ} \times 4 \text{ mA}}{100} = 0.8 \text{ V} \quad (7)$$

and

$$V_{DC_{\text{max}}} = \frac{R_{IN} \times I_{OUT_{\text{max}}}}{\text{Gain}} = \frac{20 \text{ kΩ} \times 20 \text{ mA}}{100} = 4 \text{ V}. \quad (8)$$
Conclusion

Simple operational-amplifier circuits can be used to design a low-cost HART transmitter for the conventional 4- to 20-mA current loop.

Figure 3 shows the signal voltages at various test points during a HART transmission for a DC input of 2 V. Resistor matching in the difference amplifier, A2, removes the \(V_{REF} \) component in the output signal. Thus, deviations in the reference voltage have no impact on \(V_{OUT} \). The output signal therefore swings symmetrically around the 2-V DC input.

References

For more information related to this article, you can download an Acrobat® Reader® file at www.ti.com/lit/litnumber and replace “litnumber” with the TI Lit. # for the materials listed at right.

Figure 3. Signal voltages of the HART transmitter’s signal path

<table>
<thead>
<tr>
<th>DATA (V)</th>
<th>FSK (V)</th>
<th>(V_{IN}) (V)</th>
<th>A1 Out (V)</th>
<th>(V_{HART}) (V)</th>
<th>VDC (V)</th>
<th>(V_{OUT}) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2.33</td>
<td>2.33</td>
<td>2.55</td>
<td>2.54</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2.44</td>
<td>2.44</td>
<td>2.33</td>
<td>2.34</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2.54</td>
<td>2.54</td>
<td>2.33</td>
<td>2.34</td>
<td>1.9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5.0</td>
<td>5.0</td>
<td>2.5</td>
<td>2.44</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Document Title

Related Web sites

interface.ti.com
Replace partnumber with OPA2374, SN74AHC00, or XTR115
Design considerations for system-level ESD circuit protection

By Roger Liang
Systems Engineer

Introduction
As technology has evolved, mobile electronic devices have also evolved to become an integral part of people’s lives and cultures. The advent of haptics for tablets and smartphones has encouraged increasing interaction with these devices. This creates the perfect environment for electrostatic discharge (ESD) hazards, or the discharge of static electricity from a body surface to a device. In the case of consumer electronics, for example, ESD can occur between a user’s finger and a tablet’s USB or HDMI connector and cause irreversible damage to the tablet, such as spiked standby current or permanent system failure.

This article explains the difference between system-level and device-level ESD phenomena and offers system-level design techniques that are targeted to protect against everyday ESD events.

System-level versus device-level ESD protection
ESD damage to ICs can occur at any time, from assembly to board-level soldering to end-user interactions. The incidence of ESD-related damage dates back to the dawn of semiconductors, but it didn’t become a prevalent problem until the 1970s with the introduction of the microchip and thin-gate-oxide FETs for highly integrated ICs. All ICs have built-in device-level ESD structures that protect the IC against ESD events during the manufacturing phase. These events are simulated by three different device-level models: the human-body model (HBM), the machine model (MM), and the charged-device model (CDM). The HBM is intended to emulate ESD events caused by human handling, the MM to emulate ESD events caused by automated handling, and the CDM to emulate ESD events caused by product charging/discharging. These models are used for testing in the manufacturing environment, where assembly, final testing, and board-level soldering are performed in controlled ESD environments that limit the level of ESD stress to which the device is exposed. In the manufacturing environment, ICs are usually specified to survive ESD strikes only to a 2-kV HBM, while lower-geometry devices have recently been specified to as low as 500 V.

While device-level models are usually sufficient for the controlled ESD environment of the factory floor, they are completely inadequate for system-level testing. The levels of ESD strikes from both voltages and currents can be much greater in the end-user environment. For this reason, the industry uses a different method for system-level ESD testing, defined by the IEC 61000-4-2 standard. Device-level HBM, MM, and CDM tests are intended to ensure only that ICs survive the manufacturing process; system-level tests specified by IEC 61000-4-2 are intended to simulate end-user ESD events in the real world.

There are two types of system-level tests specified by the IEC: contact discharge and air-gap discharge. In the contact-discharge method, the test-simulator electrode is held in contact with the device under test (DUT). In air-gap discharge, the charged electrode of the simulator approaches the DUT, and a spark to the DUT actuates the discharge.

The range of test levels specified in the IEC 61000-4-2 standard for each method is given in Table 1. It is important to note that the severity of each test level is not equivalent between the two methods. Stress levels are usually incrementally tested above level 4 (the highest official level for each method) until the point of failure.

<table>
<thead>
<tr>
<th>CONTACT-DISCHARGE LEVEL</th>
<th>TEST VOLTAGE (± kV)</th>
<th>AIR-GAP-DISCHARGE LEVEL</th>
<th>TEST VOLTAGE (± kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td>15</td>
</tr>
</tbody>
</table>
Device-level models and system-level models have some distinct differences, as highlighted in Table 2. The last three parameters in Table 2—current, rise time, and number of voltage strikes—are of particular concern:

- **The difference in current is critical to whether the ESD-sensitive device survives an ESD strike.** Because high current levels can cause junction damage and gate-oxide damage, it is possible that a chip protected by an 8-kV HBM (with a peak current of 5.33 A) can be destroyed by a strike to a 2-kV IEC model (with a peak current of 7.5 A). Thus, it is extremely important that system designers do not confuse HBM ratings with ratings for the IEC model.

- **Another difference lies within the rise time of the voltage strikes.** The rise time specified for an HBM is 25 ns. The pulse of the IEC model has a rise time of less than 1 ns and dissipates most of its energy in the first 30 ns. If an HBM-rated device takes 25 ns to respond, the device can be destroyed before its protection circuits are even activated.

- **The number of strikes used during testing is different between the models.** The HBM requires only a single positive and single negative strike to be tested, whereas the IEC model requires ten positive strikes and ten negative strikes. It is possible for a device to survive the first strike but fail on subsequent strikes due to damage sustained during the initial strike. Figure 1 shows example ESD waveforms for a CDM, an HBM, and the IEC model. It is apparent that the IEC model’s pulse carries much more energy than the pulse of each device-level model.

How a TVS protects a system against ESD events

Instead of integrated structures for ESD protection, the model specified by the IEC 61000-4-2 standard usually uses discrete stand-alone transient-voltage-suppressant diodes, or transient-voltage suppressors (TVSs). Compared to ESD-protection structures integrated into a power-management or microcontroller unit, stand-alone TVSs are low in cost and can be placed close to the system’s I/O connector, as shown in Figure 2.
There are two types of TVSs: bidirectional and unidirectional (see Figure 3). The Texas Instruments TPD1E10B06 is an example of a bidirectional TVS that can be placed on a general-purpose data line for system-level ESD protection. Both bidirectional and unidirectional TVSs are designed to be an open circuit during normal operating conditions, and a short to ground during an ESD event. In the case of a bidirectional TVS, a voltage signal on the I/O line can swing above and below ground as long as neither D1 nor D2 enters its breakdown region. When an ESD strike (positive or negative) hits the I/O line, one diode becomes forward-biased and the other breaks down, creating a path in which ESD energy is immediately dumped to ground. In the case of a unidirectional TVS, a voltage signal can swing above ground as long as neither D2 nor Z1 enters its breakdown region. When a positive ESD strike hits the I/O line, D1 becomes forward-biased and Z1 enters its breakdown region before D2 does; a path to ground is created through D1 and Z1 in which ESD energy is dissipated. When a negative ESD strike hits, D2 becomes forward-biased and ESD energy is dissipated through D2 to ground. Unidirectional diodes are implemented for high-speed applications because D1 and D2 can be sized smaller with less parasitic capacitance; D1 and D2 in turn “hide” the bigger Zener diode, Z1, which is sized bigger in order to handle more current in its breakdown region.

Key device parameters for system-level ESD protection

Figure 4 shows the characteristics of a TVS diode’s current versus voltage. Even though a TVS is a simple structure, several important parameters should be considered in the design of system-level ESD protection. These include breakdown voltage, \(V_{BR} \); dynamic resistance, \(R_{DYN} \); clamping voltage, \(V_{CL} \); and capacitance.

Breakdown voltage

The first step in selecting the appropriate TVS is looking at the breakdown voltage (\(V_{BR} \)). For example, if the maximum working voltage, \(V_{RWM} \), on the protected I/O line is 5 V, the TVS should not enter into its breakdown region before reaching this maximum. More often than not, a TVS datasheet includes \(V_{RWM} \) at a specific leakage current, which makes choosing the right TVS easy. If that is not the case, a TVS can be selected whose \(V_{BR(min)} \) is a couple of volts higher than the \(V_{RWM} \) of the protected I/O line.

Dynamic resistance

An ESD is an ultrafast event in the range of nanoseconds. During such a short amount of time, the TVS conduction path to ground is not established instantaneously and there is some resistance in this path. This resistance, known as dynamic resistance (\(R_{DYN} \)), is shown in Figure 5.
Ideally, R_{DYN} should be zero so that voltage on the I/O line can be clamped as close to the V_{BR} as possible; however, that is never the case. The industry’s current standard value for R_{DYN} is 1 Ω or less. R_{DYN} can be captured by using transmission-line pulse-measurement techniques, where a charged voltage is discharged through the TVS and a corresponding current is measured. After many data points with different charged voltages have been taken, an IV curve like the one in Figure 6 can be drawn, and the slope is R_{DYN}. Figure 6 shows the TPD1E10B06’s R_{DYN}, which has a typical value of ~0.3 Ω.

Clamping voltage

Since an ESD is an ultrafast transient event, the voltage on the I/O line is not clamped instantaneously. As shown in Figure 7, thousands of volts are clamped to tens of volts according to the IEC 61000-4-2 standard. As indicated by Equation 1, the lower R_{DYN} is, the better the clamping performance will be:

$$V_{CL} = V_{BR} + I_{PP} \times R_{DYN} + I_{Parasitic} \times \frac{dI_{PP}}{dt}.$$ \hspace{1cm} (1)

where I_{PP} is the peak pulse current during an ESD event, and $I_{Parasitic}$ is the parasitic inductance of the trace from the connector through the TVS to ground.

Imagine the area under the clamping-voltage waveform as energy. The better the clamping performance is, the less likely it is that an ESD-sensitive device under protection will be damaged during an ESD event. Due to poor clamping voltage, some TVSs survive an IEC model’s 8-kV contact discharge, but the “protected” device is destroyed.

Capacitance

During normal operating conditions, the TVS acts as an open circuit and has a parasitic-capacitance shunt to ground. It is important for the designer to take this capacitance into account in the signal chain’s bandwidth budget.

Conclusion

As IC process-technology nodes continue to become smaller, they become increasingly more susceptible to ESD damage, both during the manufacturing process and in the end-user environment. Device-level ESD protection is not enough to protect ICs on a system level. Stand-alone TVSs should be used in a system-level design. When selecting a TVS, the designer should pay careful attention to parameters such as V_{BR}, R_{DYN}, V_{CL}, and capacitance.

Reference

For more information related to this article, you can download an Acrobat Reader file at www.ti.com/lit and replace “litnumber” with the TI Lit. # for the materials listed below.

Document Title

1. “System-level ESD/EMI protection guide”...SSZB130B

Related Web sites

www.ti.com/esd

www.ti.com/product/TPD1E10B06
Index of Articles

Data Acquisition

WEBENCH® tools and the photodetector’s stability ... 4Q, 2012 5 SLY145
How delta-sigma ADCs work, Part 2 .. 4Q, 2011 5 SLY748
How delta-sigma ADCs work, Part 1 .. 3Q, 2011 13 SLY746
Clock jitter analyzed in the time domain, Part 3 .. 3Q, 2011 5 SLY742
The IBIS model, Part 3: Using IBIS models to investigate signal-integrity issues. 2Q, 2011 5 SLY413
The IBIS model, Part 2: Determining the total quality of an IBIS model. 1Q, 2011 1 SLY400
The IBIS model: A conduit into signal-integrity analysis, Part 1 4Q, 2010 11 SLY390
Clock jitter analyzed in the time domain, Part 2 ... 4Q, 2010 5 SLY388
Clock jitter analyzed in the time domain, Part 1 ... 3Q, 2010 5 SLY383
How digital filters affect analog-audio signals ... 2Q, 2010 5 SLY375
How the voltage reference affects ADC performance, Part 3 4Q, 2009 5 SLY365
How the voltage reference affects ADC performance, Part 2 3Q, 2009 13 SLY333
Impact of sampling-clock spurs on ADC performance 3Q, 2009 5 SLY338
How the voltage reference affects ADC performance, Part 1 2Q, 2009 5 SLY331
Stop-band limitations of the Sallen-Key low-pass filter 4Q, 2008 5 SLY306
A DAC for all precision occasions ... 3Q, 2008 5 SLY302
Understanding the pen-interrupt (PENIRQ) operation of touch-screen controllers 2Q, 2008 5 SLY292
Using a touch-screen controller’s auxiliary inputs ... 4Q, 2007 5 SLY288
Calibration in touch-screen systems ... 3Q, 2007 5 SLY279
Conversion latency in delta-sigma converters .. 2Q, 2007 5 SLY270
Clamp function of high-speed ADC THS1041 .. 4Q, 2006 5 SLY265
Using the ADS88361 with the MSP430™ USI port ... 3Q, 2006 5 SLY244
Matching the noise performance of the operational amplifier to the ADC 2Q, 2006 5 SLY237
Understanding and comparing datasheets for high-speed ADCs 1Q, 2006 5 SLY231
Low-power, high-intercept interface to the ADS5424 14-bit, 105-MSPS converter for undersampling applications ... 4Q, 2005 10 SLY172
Operating multiple oversampling data converters .. 4Q, 2005 5 SLY222
Simple DSP interface for ADS784x/834x ADCs ... 3Q, 2005 10 SLY210
Using resistive touch screens for human/machine interface 3Q, 2005 5 SLY209
Implementation of 12-bit delta-sigma DAC with MSC12xx controller 1Q, 2005 27 SLY003
Clocking high-speed data converters .. 1Q, 2005 20 SLY002
14-bit, 125-MSPS ADS5500 evaluation ... 1Q, 2005 13 SLY004
Supply voltage measurement and ADC PSRR improvement in MSC12xx devices 1Q, 2005 5 SLY003
Streamlining the mixed-signal path with the signal-chain-on-chip (MSC) 3Q, 2004 5 SLY076
ADS899 analog-to-digital converter with large input pulse signal 1Q, 2004 8 SLY073
Two-channel, 500-kSPS operation of the ADS8961 ... 1Q, 2004 5 SLY074
Evaluation criteria for ADSL analog front end .. 4Q, 2003 16 SLY001
Calculating noise figure and third-order intercept in ADCs 4Q, 2003 11 SLY000
ADS82x ADC with non-uniform sampling clock ... 4Q, 2003 5 SLY008
Interfacing op amps and analog-to-digital converters 4Q, 2002 5 SLY004
Using direct data transfer to maximize data acquisition throughput 3Q, 2002 14 SLY111
MSC1210 debugging strategies for high-precision smart sensors 3Q, 2002 7 SLY110
Adjusting the A/D voltage reference to provide gain 3Q, 2002 5 SLY109
Synchronizing non-PIFO variations of the THS1206 2Q, 2002 12 SLY116
SHDSL APE1230 application ... 2Q, 2002 5 SLY114
Intelligent sensor system maximizes battery life: Interfacing the MSP430F123 Flash MCU, ADS7822, and TPS60311 .. 1Q, 2002 5 SLY123
A/D and D/A conversion of PC graphics and component video signals, Part 2: Software and control .. July 2001 5 SLY123
A/D and D/A conversion of PC graphics and component video signals, Part 1: Hardware February 2001 11 SLY138
Using SPI synchronous communication with data converters — interfacing the MSP430F149 and TLV5616 .. February 2001 7 SLY137
Building a simple data acquisition system using the TMS320C31 DSP February 2001 1 SLY136
Data Acquisition (Continued)

Using quad and octal ADCs in SPI mode November 2000 15 SLYT149
Hardware auto-identification and software auto-configuration for the
TLV320AIC10 DSP Codec — a “plug-and-play” algorithm November 2000 8 SLYT144
Smallest DSP-compatible ADC provides simplest DSP interface November 2000 1 SLYT148
Efficiently interfacing serial data converters to high-speed DSPs ... August 2000 10 SLYT166
Higher data throughput for DSP analog-to-digital converters August 2000 5 SLYT164
New DSP development environment includes data converter plug-ins August 2000 1 SLYT158
Introduction to phase-locked loop system modeling May 2000 5 SLYT169
The design and performance of a precision voltage reference circuit for 14-bit and
16-bit A-to-D and D-to-A converters May 2000 1 SLYT168
The operation of the SAR-ADC based on charge redistribution February 2000 10 SLYT178
A methodology of interfacing serial A-to-D converters to DSPs February 2000 1 SLYT177
Techniques for sampling high-speed graphics with lower-speed A/D converters November 1999 5 SLYT184
Precision voltage references November 1999 1 SLYT183
Evaluating operational amplifiers as input amplifiers for A-to-D converters August 1999 7 SLYT193
Low-power data acquisition sub-system using the TI TLV1572 August 1999 4 SLYT192
Aspects of data acquisition system design August 1999 1 SLYT191

Power Management

Simple open-circuit protection for boost converters in LED driver applications 4Q, 2012 21 SLYT143
LDO noise examined in detail .. 4Q, 2012 14 SLYT145
Harnessing wasted energy in 4- to 20-mA current-loop systems 4Q, 2012 10 SLYT147
Designing a Qi-compliant receiver coil for wireless power systems, Part 1 3Q, 2012 8 SLYT174
Easy solar-panel maximum-power-point tracking for pulsed-load applications 3Q, 2012 5 SLYT175
Design considerations for a resistive feedback divider in a DC/DC converter 2Q, 2012 18 SLYT163
Charging a three-cell nickel-based battery pack with a Li-Ion charger 2Q, 2012 14 SLYT162
Remote sensing for power supplies 2Q, 2012 12 SLYT161
A solar-powered buck/boost battery charger 2Q, 2012 8 SLYT160
Controlling switch-node ringing in synchronous buck converters 2Q, 2012 5 SLYT159
High-efficiency AC adapters for USB charging 1Q, 2012 18 SLYT158
Downslope compensation for buck converters when the duty cycle exceeds 50% 1Q, 2012 14 SLYT157
Benefits of a multiphase buck converter 1Q, 2012 8 SLYT155
Turbo-boost charger supports CPU turbo mode 1Q, 2012 5 SLYT154
Solar lantern with dimming achieves 92% efficiency 4Q, 2011 12 SLYT141
Solar charging solution provides narrow-voltage DC/DC system bus for
multicell-battery applications .. 4Q, 2011 8 SLYT142
A boost-topology battery charger powered from a solar panel 3Q, 2011 17 SLYT143
Challenges of designing high-frequency, high-input-voltage DC/DC converters 2Q, 2011 28 SLYT141
Backlighting the tablet PC .. 2Q, 2011 23 SLYT104
I_Q: What it is, what it isn’t, and how to use it 2Q, 2011 18 SLYT102
Benefits of a coupled-inductor SEPIC converter 2Q, 2011 14 SLYT101
Implementation of microprocessor-controlled, wide-input-voltage, SMBus smart
battery charger ... 2Q, 2011 11 SLYT110
Fine-tuning TI’s Impedance Track™ battery fuel gauge with LiFePO₄ cells in
shallow-discharge applications 1Q, 2011 13 SLYT403
An introduction to the Wireless Power Consortium standard and TI’s compliant solutions 1Q, 2011 10 SLYT404
Save power with a soft Zener clamp 4Q, 2010 19 SLYT398
A low-cost, non-isolated AC/DC buck converter with no transformer 4Q, 2010 16 SLYT399
Computing power going “Platinum” 3Q, 2010 13 SLYT381
Coupled inductors broaden DC/DC converter usage 3Q, 2010 10 SLYT382
Designing DC/DC converters based on ZETA topology 2Q, 2010 16 SLYT372
Discrete design of a low-cost isolated 3.3- to 5-V DC/DC converter 2Q, 2010 12 SLYT373
Power-supply design for high-speed ADCs 1Q, 2010 12 SLYT366
Li-Ion battery-charger solutions for JETTA compliance 1Q, 2010 8 SLYT367
Fuel-gauging considerations in battery backup storage systems 1Q, 2010 5 SLYT364
Efficiency of synchronous versus nonsynchronous buck converters 4Q, 2009 15 SLYT358
Designing a multichemistry battery charger 4Q, 2009 13 SLYT359
Index of Articles

Texas Instruments Incorporated

Power Management (Continued)

<table>
<thead>
<tr>
<th>Title</th>
<th>Issue</th>
<th>Page</th>
<th>Lit. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using power solutions to extend battery life in MSP430™ applications</td>
<td>4Q, 2009</td>
<td>10</td>
<td>SLTY0756</td>
</tr>
<tr>
<td>Reducing radiated EMI in WLED drivers</td>
<td>3Q, 2009</td>
<td>17</td>
<td>SLTY0746</td>
</tr>
<tr>
<td>Selecting the right charge-management solution.</td>
<td>2Q, 2009</td>
<td>18</td>
<td>SLTY0754</td>
</tr>
<tr>
<td>Designing a linear Li-Ion battery charger with power-path control</td>
<td>2Q, 2009</td>
<td>12</td>
<td>SLTY0753</td>
</tr>
<tr>
<td>Taming linear-regulator inrush currents</td>
<td>2Q, 2009</td>
<td>9</td>
<td>SLTY0752</td>
</tr>
<tr>
<td>Using a portable-power boost converter in an isolated flyback...</td>
<td>1Q, 2009</td>
<td>19</td>
<td>SLTY0723</td>
</tr>
<tr>
<td>Cell balancing buys extra run time and battery life</td>
<td>1Q, 2009</td>
<td>14</td>
<td>SLTY0722</td>
</tr>
<tr>
<td>Improving battery safety, charging, and fuel gauging in portable...</td>
<td>1Q, 2009</td>
<td>9</td>
<td>SLTY0721</td>
</tr>
<tr>
<td>Paralleling power modules for high-current applications</td>
<td>1Q, 2009</td>
<td>5</td>
<td>SLTY0720</td>
</tr>
<tr>
<td>Designing DC/DC converters based on SEPIC topology</td>
<td>4Q, 2008</td>
<td>18</td>
<td>SLTY0706</td>
</tr>
<tr>
<td>Compensating and measuring the control loop of a high-power LED...</td>
<td>4Q, 2008</td>
<td>14</td>
<td>SLTY0708</td>
</tr>
<tr>
<td>Getting the most battery life from portable systems</td>
<td>4Q, 2008</td>
<td>8</td>
<td>SLTY0707</td>
</tr>
</tbody>
</table>

New current-mode PWM controllers support boost, flyback, SEPIC, and
LED-driver applications | 3Q, 2008 | 9 | SLTY0702 |

Battery-charger front-end IC improves charging-system safety | 2Q, 2008 | 14 | SLTY0704 |

Understanding output voltage limitations of DC/DC buck converters | 2Q, 2008 | 11 | SLTY0703 |

Using a buck converter in an inverting buck-boost topology | 4Q, 2007 | 16 | SLTY0728 |

Host-side gas-gauge-system design considerations for single-cell... | 4Q, 2007 | 17 | SLTY0727 |

Driving a WLED does not always require 4 V | 4Q, 2007 | 9 | SLTY0724 |

Simultaneous power-down sequencing with the TPS74x01 family of linear regulators | 3Q, 2007 | 20 | SLTY0721 |

Get low-noise, low-ripple, high-PSRR power with the TPS717xx | 3Q, 2007 | 17 | SLTY0720 |

TPS6108x: A boost converter with extreme versatility | 3Q, 2007 | 14 | SLTY0723 |

Power-management solutions for telecom systems improve performance, cost, and size | 3Q, 2007 | 10 | SLTY0722 |

Current balancing in four-pair, high-power PoE applications | 2Q, 2007 | 11 | SLTY0720 |

Enhanced-safety, linear Li-Ion battery charger with thermal regulation and input overvoltage protection | 2Q, 2007 | 8 | SLTY0726 |

Power management for processor core voltage requirements | 1Q, 2007 | 11 | SLTY0719 |

LDO white-LED driver TPS5710x provides incredibly small solution size | 1Q, 2007 | 9 | SLTY0720 |

Selecting the correct IC for power-supply applications | 1Q, 2007 | 5 | SLTY0723 |

Fully integrated TPS6300x buck-boost converter extends Li-Ion battery life | 4Q, 2006 | 15 | SLTY0726 |

bt25012 single-chip, Li-Ion charger and dc/dc converter for... | 4Q, 2006 | 20 | SLTY0727 |

A 3-A, 1.2-V_{OUT} linear regulator with 80% efficiency and P_{LOSS} < 1 W | 4Q, 2006 | 10 | SLTY0724 |

Complete battery-pack design for one- or two-cell portable applications | 3Q, 2006 | 14 | SLTY0723 |

Single-chip bt2403x power-path manager charges battery while... | 3Q, 2006 | 12 | SLTY0724 |

TPS65525A powers portable photoflash | 3Q, 2006 | 10 | SLTY0723 |

TPS61059 powers white-light LED as photoflash or movie light | 3Q, 2006 | 8 | SLTY0723 |

Powering today’s multi-rail FPGAs and DSPs, Part 2 | 2Q, 2006 | 18 | SLTY0723 |

Wide-input dc/dc modules offer maximum design flexibility | 2Q, 2006 | 13 | SLTY0723 |

TLC5940 PWM dimming provides superior color quality in LED video displays | 2Q, 2006 | 10 | SLTY0723 |

Practical considerations when designing a power supply with the TPS6211x | 1Q, 2006 | 17 | SLTY0734 |

TPS79918 RF LDO supports migration to StrataFlash® Embedded Memory (P30) | 1Q, 2006 | 14 | SLTY0733 |

Powering today’s multi-rail FPGAs and DSPs, Part 1 | 1Q, 2006 | 9 | SLTY0723 |

TLC5940 dot correction compensates for variations in... | 4Q, 2005 | 21 | SLTY0723 |

Li-Ion switching charger integrates power FETs | 4Q, 2005 | 19 | SLTY0723 |

New power modules improve surface-mount manufacturability | 3Q, 2005 | 18 | SLTY0721 |

Miniature solutions for voltage isolation | 3Q, 2005 | 13 | SLTY0724 |

Understanding power supply ripple rejection in linear regulators | 2Q, 2005 | 8 | SLTY0722 |

Understanding noise in linear regulators | 2Q, 2005 | 5 | SLTY0701 |

A better bootstrap/bias supply circuit | 1Q, 2005 | 33 | SLTY0702 |

Tips for successful power-up of today’s high-performance FPGAs | 3Q, 2004 | 11 | SLTY0703 |

LED-driver considerations | 1Q, 2004 | 14 | SLTY0704 |

UCC28517 100-W PFC power converter with 12-V, 8-W bias supply, Part 2 | 4Q, 2003 | 21 | SLTY0702 |

UCC28517 100-W PFC power converter with 12-V, 8-W bias supply, Part 1 | 3Q, 2003 | 13 | SLTY0705 |

Soft-start circuits for LDO linear regulators | 3Q, 2003 | 10 | SLTY0706 |

Auto-Track™ voltage sequencing simplifies simultaneous power-up and power-down | 3Q, 2003 | 5 | SLTY0706 |

Using the TPS61042 white-light LED driver as a boost converter | 1Q, 2003 | 7 | SLTY1011 |

Load-sharing techniques: Paralleling power modules with overcurrent protection | 1Q, 2003 | 5 | SLTY1007 |
<table>
<thead>
<tr>
<th>Title</th>
<th>Issue</th>
<th>Page</th>
<th>Lit. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Management (Continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understanding piezoelectric transformers in CCFL backlight applications</td>
<td>.4Q, 2002</td>
<td>18</td>
<td>SLYT177</td>
</tr>
<tr>
<td>Power conservation options with dynamic voltage scaling in portable DSP designs</td>
<td>.4Q, 2002</td>
<td>12</td>
<td>SLYT160</td>
</tr>
<tr>
<td>Using the UCC3580-1 controller for highly efficient 3.3-V/100-W isolated supply design</td>
<td>.4Q, 2002</td>
<td>8</td>
<td>SLYT152</td>
</tr>
<tr>
<td>Powering electronics from the USB port</td>
<td>.2Q, 2002</td>
<td>28</td>
<td>SLYT118</td>
</tr>
<tr>
<td>Optimizing the switching frequency of ADSL power supplies</td>
<td>.2Q, 2002</td>
<td>23</td>
<td>SLYT116</td>
</tr>
<tr>
<td>SWIFT™ Designer power supply design program</td>
<td>.2Q, 2002</td>
<td>15</td>
<td>SLYT116</td>
</tr>
<tr>
<td>Why use a wall adapter for ac input power?</td>
<td>.1Q, 2002</td>
<td>18</td>
<td>SLYT126</td>
</tr>
<tr>
<td>Comparing magnetic and piezoelectric transformer approaches in CCFL applications</td>
<td>.1Q, 2002</td>
<td>12</td>
<td>SLYT125</td>
</tr>
<tr>
<td>Power control design key to realizing InfiniBand® benefits</td>
<td>.1Q, 2002</td>
<td>10</td>
<td>SLYT124</td>
</tr>
<tr>
<td>Runtime power control for DSPs using the TPS62000 buck converter</td>
<td>July 2001</td>
<td>15</td>
<td>SLYT130</td>
</tr>
<tr>
<td>Power supply solution for DDR bus termination</td>
<td>July 2001</td>
<td>9</td>
<td>SLYT130</td>
</tr>
<tr>
<td>–48-V+/48-V hot-swap applications</td>
<td>February 2001</td>
<td>20</td>
<td>SLYT140</td>
</tr>
<tr>
<td>Optimal design for an interleaved synchronous buck converter under high-slew-rate, load-current transient conditions</td>
<td>February 2001</td>
<td>15</td>
<td>SLYT139</td>
</tr>
<tr>
<td>Comparison of different power supplies for portable DSP solutions working from a single battery</td>
<td>November 2000</td>
<td>24</td>
<td>SLYT152</td>
</tr>
<tr>
<td>Understanding the load-transient response of LDOs</td>
<td>November 2000</td>
<td>19</td>
<td>SLYT151</td>
</tr>
<tr>
<td>Optimal output filter design for microprocessor or DSP power supply</td>
<td>August 2000</td>
<td>22</td>
<td>SLYT162</td>
</tr>
<tr>
<td>Advantages of using PMOS-type low-dropout linear regulators in battery applications</td>
<td>August 2000</td>
<td>16</td>
<td>SLYT161</td>
</tr>
<tr>
<td>Low-cost, minimum-size solution for powering future-generation Celeron™-type processors with peak currents up to 26 A.</td>
<td>May 2000</td>
<td>14</td>
<td>SLYT177</td>
</tr>
<tr>
<td>Simple design of an ultra-low-ripple DC/DC boost converter with TPS60100 charge pump</td>
<td>May 2000</td>
<td>11</td>
<td>SLYT170</td>
</tr>
<tr>
<td>Powering Celeron-type microprocessors using TI's TPS5210 and TPS5211 controllers</td>
<td>February 2000</td>
<td>20</td>
<td>SLYT178</td>
</tr>
<tr>
<td>Power supply solutions for TI DSPs using synchronous buck converters</td>
<td>February 2000</td>
<td>12</td>
<td>SLYT177</td>
</tr>
<tr>
<td>Understanding the stable range of equivalent series resistance of an LDO regulator</td>
<td>November 1999</td>
<td>14</td>
<td>SLYT180</td>
</tr>
<tr>
<td>Synchronous buck regulator design using the TI TPS5211 high-frequency hysteretic controller</td>
<td>November 1999</td>
<td>10</td>
<td>SLYT185</td>
</tr>
<tr>
<td>TI TPS5602 for powering TI's DSPs</td>
<td>November 1999</td>
<td>8</td>
<td>SLYT185</td>
</tr>
<tr>
<td>Migrating from the TI TL770x to the TI TLC770x</td>
<td>August 1999</td>
<td>14</td>
<td>SLYT193</td>
</tr>
<tr>
<td>Extended output voltage adjustment (0 V to 3.5 V) using the TI TPS5210</td>
<td>August 1999</td>
<td>13</td>
<td>SLYT193</td>
</tr>
<tr>
<td>Stability analysis of low-dropout linear regulators with a PMOS pass element</td>
<td>August 1999</td>
<td>10</td>
<td>SLYT194</td>
</tr>
<tr>
<td>Interface (Data Transmission)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design considerations for system-level ESD circuit protection</td>
<td>.4Q, 2012</td>
<td>28</td>
<td>SLYT192</td>
</tr>
<tr>
<td>How to design an inexpensive HART transmitter</td>
<td>.4Q, 2012</td>
<td>24</td>
<td>SLYT191</td>
</tr>
<tr>
<td>Data-rate independent half-duplex repeater design for RS-485</td>
<td>.3Q, 2012</td>
<td>15</td>
<td>SLYT180</td>
</tr>
<tr>
<td>Extending the SPI bus for long-distance communication</td>
<td>.4Q, 2011</td>
<td>16</td>
<td>SLYT141</td>
</tr>
<tr>
<td>Industrial data-acquisition interfaces with digital isolators</td>
<td>.3Q, 2011</td>
<td>24</td>
<td>SLYT126</td>
</tr>
<tr>
<td>Isolated RS-485 transceivers support DMX512 stage lighting and special-effects applications</td>
<td>.3Q, 2011</td>
<td>21</td>
<td>SLYT125</td>
</tr>
<tr>
<td>Designing an isolated I²C Bus® interface by using digital isolators</td>
<td>.1Q, 2011</td>
<td>17</td>
<td>SLYT140</td>
</tr>
<tr>
<td>Interfacing high-voltage applications to low-power controllers</td>
<td>.4Q, 2010</td>
<td>20</td>
<td>SLYT120</td>
</tr>
<tr>
<td>Magnetic-field immunity of digital capacitive isolators</td>
<td>.3Q, 2010</td>
<td>19</td>
<td>SLYT139</td>
</tr>
<tr>
<td>Designing with digital isolators</td>
<td>.2Q, 2009</td>
<td>21</td>
<td>SLYT139</td>
</tr>
<tr>
<td>Message priority inversion on a CAN bus</td>
<td>.1Q, 2009</td>
<td>25</td>
<td>SLYT139</td>
</tr>
<tr>
<td>RS-485: Passive failsafe for an idle bus</td>
<td>.1Q, 2009</td>
<td>22</td>
<td>SLYT124</td>
</tr>
<tr>
<td>Cascading of input serializers boosts channel density for digital inputs</td>
<td>.3Q, 2008</td>
<td>16</td>
<td>SLYT1501</td>
</tr>
<tr>
<td>When good grounds turn bad—isolate!</td>
<td>.3Q, 2008</td>
<td>11</td>
<td>SLYT129</td>
</tr>
<tr>
<td>Enabling high-speed USB OTG functionality on TI DSPs</td>
<td>.2Q, 2007</td>
<td>18</td>
<td>SLYT127</td>
</tr>
<tr>
<td>Detection of RS-485 signal loss</td>
<td>.4Q, 2006</td>
<td>18</td>
<td>SLYT127</td>
</tr>
<tr>
<td>Improved CAN network security with TI's SN65HVD1650 transceiver</td>
<td>.3Q, 2006</td>
<td>17</td>
<td>SLYT123</td>
</tr>
<tr>
<td>Device spacing on RS-485 buses</td>
<td>.2Q, 2006</td>
<td>25</td>
<td>SLYT121</td>
</tr>
<tr>
<td>Maximizing signal integrity with M-LVDS backplanes</td>
<td>.2Q, 2005</td>
<td>11</td>
<td>SLYT120</td>
</tr>
<tr>
<td>Failsafe in RS-485 data buses</td>
<td>.3Q, 2004</td>
<td>16</td>
<td>SLYT080</td>
</tr>
<tr>
<td>The RS-485 unit load and maximum number of bus connections</td>
<td>.1Q, 2004</td>
<td>21</td>
<td>SLYT086</td>
</tr>
<tr>
<td>Estimating available application power for Power-over-Ethernet applications</td>
<td>.1Q, 2004</td>
<td>18</td>
<td>SLYT085</td>
</tr>
<tr>
<td>Power consumption of LVPECL and LVDS</td>
<td>.1Q, 2002</td>
<td>23</td>
<td>SLYT127</td>
</tr>
<tr>
<td>The SN65LVDS33/34 as an ECL-to-LV TTL converter</td>
<td>July 2001</td>
<td>19</td>
<td>SLYT132</td>
</tr>
</tbody>
</table>
Interface (Data Transmission) (Continued)

<table>
<thead>
<tr>
<th>Title</th>
<th>Issue</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Active Fail-Safe feature of the SN65LVDS32A</td>
<td>November 2000</td>
<td>35</td>
</tr>
<tr>
<td>A statistical survey of common-mode noise</td>
<td>November 2000</td>
<td>30</td>
</tr>
<tr>
<td>Performance of LVDS with different cables</td>
<td>August 2000</td>
<td>30</td>
</tr>
<tr>
<td>LVDS: The ribbon cable connection</td>
<td>May 2000</td>
<td>19</td>
</tr>
<tr>
<td>LVDS receivers solve problems in non-LVDS applications</td>
<td>February 2000</td>
<td>33</td>
</tr>
<tr>
<td>Skew definition and jitter analysis</td>
<td>February 2000</td>
<td>29</td>
</tr>
<tr>
<td>Keep an eye on the LVDS input levels</td>
<td>November 1999</td>
<td>17</td>
</tr>
<tr>
<td>TIA/EIA-568A Category 5 cables in low-voltage differential signaling (LVDS)</td>
<td>August 1999</td>
<td>16</td>
</tr>
</tbody>
</table>

Amplifiers: Audio

<table>
<thead>
<tr>
<th>Title</th>
<th>Issue</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precautions for connecting APA outputs to other devices</td>
<td>.2Q, 2010</td>
<td>22</td>
</tr>
<tr>
<td>Audio power amplifier measurements, Part 2</td>
<td>.1Q, 2002</td>
<td>26</td>
</tr>
<tr>
<td>Audio power amplifier measurements</td>
<td>July 2001</td>
<td>40</td>
</tr>
<tr>
<td>An audio circuit collection, Part 3</td>
<td>July 2001</td>
<td>34</td>
</tr>
<tr>
<td>An audio circuit collection, Part 2</td>
<td>February 2001</td>
<td>41</td>
</tr>
<tr>
<td>Notebook computer upgrade path for audio power amplifiers</td>
<td>February 2001</td>
<td>27</td>
</tr>
<tr>
<td>1.6- to 3.6-volt BTL speaker driver reference design</td>
<td>February 2001</td>
<td>23</td>
</tr>
<tr>
<td>An audio circuit collection, Part 1</td>
<td>November 2000</td>
<td>39</td>
</tr>
<tr>
<td>PCB layout for the TPA005D11X and TPA032D01X Class-D APAs.</td>
<td>February 2000</td>
<td>39</td>
</tr>
<tr>
<td>Power supply decoupling and audio signal filtering for the Class-D audio power amplifier</td>
<td>August 1999</td>
<td>24</td>
</tr>
<tr>
<td>Reducing the output filter of a Class-D amplifier</td>
<td>August 1999</td>
<td>19</td>
</tr>
</tbody>
</table>

Amplifiers: Op Amps

<table>
<thead>
<tr>
<th>Title</th>
<th>Issue</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using a fixed threshold in ultrasonic distance-ranging automotive applications</td>
<td>.3Q, 2012</td>
<td>19</td>
</tr>
<tr>
<td>Source resistance and noise considerations in amplifiers</td>
<td>.2Q, 2012</td>
<td>23</td>
</tr>
<tr>
<td>Measuring op amp settling time by using sample-and-hold technique</td>
<td>.1Q, 2012</td>
<td>21</td>
</tr>
<tr>
<td>Converting single-ended video to differential video in single-supply systems</td>
<td>.3Q, 2011</td>
<td>29</td>
</tr>
<tr>
<td>Using single-supply fully differential amplifiers with negative input voltages to drive ADCs</td>
<td>.4Q, 2010</td>
<td>26</td>
</tr>
<tr>
<td>Operational amplifier gain stability, Part 3: AC gain-error analysis</td>
<td>.3Q, 2010</td>
<td>23</td>
</tr>
<tr>
<td>Operational amplifier gain stability, Part 2: DC gain-error analysis</td>
<td>.2Q, 2010</td>
<td>24</td>
</tr>
<tr>
<td>Interfacing op amps to high-speed DACs, Part 3: Current-sourcing DACs simplified</td>
<td>.1Q, 2010</td>
<td>32</td>
</tr>
<tr>
<td>Signal conditioning for piezoelectric sensors</td>
<td>.1Q, 2010</td>
<td>24</td>
</tr>
<tr>
<td>Operational amplifier gain stability, Part 1: General system analysis</td>
<td>.1Q, 2010</td>
<td>20</td>
</tr>
<tr>
<td>Interfacing op amps to high-speed DACs, Part 2: Current-sourcing DACs</td>
<td>.4Q, 2009</td>
<td>23</td>
</tr>
<tr>
<td>Using fully differential op amps as attenuators, Part 3: Single-ended unipolar input signals</td>
<td>.4Q, 2009</td>
<td>19</td>
</tr>
<tr>
<td>Using the infinite-gain, MFB filter topology in fully differential active filters</td>
<td>.3Q, 2009</td>
<td>33</td>
</tr>
<tr>
<td>Interfacing op amps to high-speed DACs, Part 1: Current-sinking DACs</td>
<td>.3Q, 2009</td>
<td>24</td>
</tr>
<tr>
<td>Using fully differential op amps as attenuators, Part 2: Single-ended bipolar input signals</td>
<td>.3Q, 2009</td>
<td>21</td>
</tr>
<tr>
<td>Using fully differential op amps as attenuators, Part 1: Differential bipolar input signals</td>
<td>.2Q, 2009</td>
<td>33</td>
</tr>
<tr>
<td>Output impedance matching with fully differential operational amplifiers</td>
<td>.1Q, 2009</td>
<td>29</td>
</tr>
<tr>
<td>A dual-polarity, bidirectional current-shunt monitor</td>
<td>.4Q, 2008</td>
<td>29</td>
</tr>
<tr>
<td>Input impedance matching with fully differential amplifiers</td>
<td>.4Q, 2008</td>
<td>24</td>
</tr>
<tr>
<td>A new filter topology for analog high-pass filters</td>
<td>.3Q, 2008</td>
<td>18</td>
</tr>
<tr>
<td>New zero-drift amplifier has an Iq of 17 µA</td>
<td>.2Q, 2007</td>
<td>22</td>
</tr>
<tr>
<td>Accurately measuring ADC driving-circuit settling time</td>
<td>.1Q, 2007</td>
<td>14</td>
</tr>
<tr>
<td>Low-cost current-shunt monitor IC revives moving-coil meter design</td>
<td>.2Q, 2006</td>
<td>27</td>
</tr>
<tr>
<td>High-speed notch filters</td>
<td>.1Q, 2006</td>
<td>19</td>
</tr>
<tr>
<td>Getting the most out of your instrumentation amplifier design</td>
<td>.4Q, 2005</td>
<td>25</td>
</tr>
<tr>
<td>So many amplifiers to choose from: Matching amplifiers to applications</td>
<td>.3Q, 2005</td>
<td>24</td>
</tr>
<tr>
<td>Auto-zero amplifiers ease the design of high-precision circuits</td>
<td>.2Q, 2005</td>
<td>19</td>
</tr>
<tr>
<td>Active filters using current-feedback amplifiers</td>
<td>.3Q, 2004</td>
<td>21</td>
</tr>
<tr>
<td>Integrated logarithmic amplifiers for industrial applications</td>
<td>.1Q, 2004</td>
<td>28</td>
</tr>
<tr>
<td>Op amp stability and input capacitance</td>
<td>.1Q, 2004</td>
<td>24</td>
</tr>
<tr>
<td>Calculating noise figure in op amp</td>
<td>.4Q, 2003</td>
<td>31</td>
</tr>
<tr>
<td>Expanding the usability of current-feedback amplifiers</td>
<td>.3Q, 2003</td>
<td>23</td>
</tr>
<tr>
<td>Video switcher using high-speed op amps</td>
<td>.3Q, 2003</td>
<td>20</td>
</tr>
<tr>
<td>Analyzing feedback loops containing secondary amplifiers</td>
<td>.1Q, 2003</td>
<td>14</td>
</tr>
<tr>
<td>Title</td>
<td>Issue</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Amplifiers: Op Amps (Continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF and IF amplifiers with op amps</td>
<td>1Q, 2003</td>
<td>9</td>
</tr>
<tr>
<td>Active output impedance for ADSL line drivers</td>
<td>4Q, 2002</td>
<td>24</td>
</tr>
<tr>
<td>FilterPro™ low-pass design tool</td>
<td>3Q, 2002</td>
<td>24</td>
</tr>
<tr>
<td>Using high-speed op amps for high-performance RF design, Part 2</td>
<td>3Q, 2002</td>
<td>21</td>
</tr>
<tr>
<td>Using high-speed op amps for high-performance RF design, Part 1</td>
<td>2Q, 2002</td>
<td>46</td>
</tr>
<tr>
<td>Worst-case design of op amp circuits</td>
<td>2Q, 2002</td>
<td>42</td>
</tr>
<tr>
<td>Fully differential amplifier design in high-speed data acquisition systems</td>
<td>2Q, 2002</td>
<td>35</td>
</tr>
<tr>
<td>Designing for low distortion with high-speed op amps</td>
<td>July 2001</td>
<td>25</td>
</tr>
<tr>
<td>Frequency response errors in voltage feedback op amps</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>Pressure transducer-to-ADC application</td>
<td>February 2001</td>
<td>38</td>
</tr>
<tr>
<td>Fully differential amplifiers applications: Line termination, driving high-speed ADCs,</td>
<td>February 2001</td>
<td>32</td>
</tr>
<tr>
<td>and differential transmission lines</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>Analysis of fully differential amplifiers</td>
<td>November 2000</td>
<td>48</td>
</tr>
<tr>
<td>Thermistor temperature transducer-to-ADC application</td>
<td>November 2000</td>
<td>44</td>
</tr>
<tr>
<td>Reducing PCB design costs: From schematic capture to PCB layout</td>
<td>August 2000</td>
<td>48</td>
</tr>
<tr>
<td>The PCB is a component of op amp design</td>
<td>August 2000</td>
<td>42</td>
</tr>
<tr>
<td>Fully differential amplifiers</td>
<td>August 2000</td>
<td>38</td>
</tr>
<tr>
<td>Design of op amp sine wave oscillators</td>
<td>August 2000</td>
<td>33</td>
</tr>
<tr>
<td>Using a decompensated op amp for improved performance</td>
<td>May 2000</td>
<td>26</td>
</tr>
<tr>
<td>Sensor to ADC — analog interface design</td>
<td>May 2000</td>
<td>22</td>
</tr>
<tr>
<td>Matching operational amplifier bandwidth with applications</td>
<td>February 2000</td>
<td>36</td>
</tr>
<tr>
<td>Reducing crosstalk of an op amp on a PCB</td>
<td>November 1999</td>
<td>23</td>
</tr>
<tr>
<td>Single-supply op amp design</td>
<td>November 1999</td>
<td>20</td>
</tr>
<tr>
<td>Low-Power RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selecting antennas for low-power wireless applications</td>
<td>2Q, 2008</td>
<td>20</td>
</tr>
<tr>
<td>Using the CC2430 and TIMAC for low-power wireless sensor applications:</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>A power- consumption study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-definition haptics: Feel the difference!</td>
<td>3Q, 2012</td>
<td>29</td>
</tr>
<tr>
<td>Applying acceleration and deceleration profiles to bipolar stepper motors</td>
<td>3Q, 2012</td>
<td>24</td>
</tr>
<tr>
<td>Industrial flow meters/flow transmitters</td>
<td>2Q, 2012</td>
<td>29</td>
</tr>
<tr>
<td>Analog linearization of resistance temperature detectors</td>
<td>4Q, 2011</td>
<td>21</td>
</tr>
<tr>
<td>Spreadsheet modeling tool helps analyze power- and ground-plane voltage drops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>to keep core voltages within tolerance</td>
<td>2Q, 2007</td>
<td>29</td>
</tr>
<tr>
<td>Analog design tools</td>
<td>2Q, 2002</td>
<td>50</td>
</tr>
<tr>
<td>Synthesis and characterization of nickel manganite from different carboxylate precursors</td>
<td>February 2001</td>
<td>52</td>
</tr>
</tbody>
</table>