Design considerations for system-level ESD circuit protection

By Roger Liang
Systems Engineer

Introduction
As technology has evolved, mobile electronic devices have also evolved to become an integral part of people’s lives and cultures. The advent of haptics for tablets and smartphones has encouraged increasing interaction with these devices. This creates the perfect environment for electrostatic discharge (ESD) hazards, or the discharge of static electricity from a body surface to a device. In the case of consumer electronics, for example, ESD can occur between a user's finger and a tablet’s USB or HDMI connector and cause irreversible damage to the tablet, such as spiked standby current or permanent system failure.

This article explains the difference between system-level and device-level ESD phenomena and offers system-level design techniques that are targeted to protect against everyday ESD events.

System-level versus device-level ESD protection
ESD damage to ICs can occur at any time, from assembly to board-level soldering to end-user interactions. The incidence of ESD-related damage dates back to the dawn of semiconductors, but it didn’t become a prevalent problem until the 1970s with the introduction of the microchip and thin-gate-oxide FETs for highly integrated ICs. All ICs have built-in device-level ESD structures that protect the IC against ESD events during the manufacturing phase. These events are simulated by three different device-level models: the human-body model (HBM), the machine model (MM), and the charged-device model (CDM). The HBM is intended to emulate ESD events caused by human handling, the MM to emulate ESD events caused by automated handling, and the CDM to emulate ESD events caused by product charging/discharging. These models are used for testing in the manufacturing environment, where assembly, final testing, and board-level soldering are performed in controlled ESD environments that limit the level of ESD stress to which the device is exposed. In the manufacturing environment, ICs are usually specified to survive ESD strikes only to a 2-kV HBM, while lower-geometry devices have recently been specified to as low as 500 V.

While device-level models are usually sufficient for the controlled ESD environment of the factory floor, they are completely inadequate for system-level testing. The levels of ESD strikes from both voltages and currents can be much greater in the end-user environment. For this reason, the industry uses a different method for system-level ESD testing, defined by the IEC 61000-4-2 standard. Device-level HBM, MM, and CDM tests are intended to ensure only that ICs survive the manufacturing process; system-level tests specified by IEC 61000-4-2 are intended to simulate end-user ESD events in the real world.

There are two types of system-level tests specified by the IEC: contact discharge and air-gap discharge. In the contact-discharge method, the test-simulator electrode is held in contact with the device under test (DUT). In air-gap discharge, the charged electrode of the simulator approaches the DUT, and a spark to the DUT actuates the discharge.

The range of test levels specified in the IEC 61000-4-2 standard for each method is given in Table 1. It is important to note that the severity of each test level is not equivalent between the two methods. Stress levels are usually incrementally tested above level 4 (the highest official level for each method) until the point of failure.

<table>
<thead>
<tr>
<th>CONTACT-DISCHARGE LEVEL</th>
<th>TEST VOLTAGE (± kV)</th>
<th>AIR-GAP-DISCHARGE LEVEL</th>
<th>TEST VOLTAGE (± kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td>15</td>
</tr>
</tbody>
</table>
Device-level models and system-level models have some distinct differences, as highlighted in Table 2. The last three parameters in Table 2—current, rise time, and number of voltage strikes—are of particular concern:

- The difference in current is critical to whether the ESD-sensitive device survives an ESD strike. Because high current levels can cause junction damage and gate-oxide damage, it is possible that a chip protected by an 8-kV HBM (with a peak current of 5.33 A) can be destroyed by a strike to a 2-kV IEC model (with a peak current of 7.5 A). Thus, it is extremely important that system designers do not confuse HBM ratings with ratings for the IEC model.

- Another difference lies within the rise time of the voltage strikes. The rise time specified for an HBM is 25 ns. The pulse of the IEC model has a rise time of less than 1 ns and dissipates most of its energy in the first 30 ns. If an HBM-rated device takes 25 ns to respond, the device can be destroyed before its protection circuits are even activated.

- The number of strikes used during testing is different between the models. The HBM requires only a single positive and single negative strike to be tested, whereas the IEC model requires ten positive strikes and ten negative strikes. It is possible for a device to survive the first strike but fail on subsequent strikes due to damage sustained during the initial strike. Figure 1 shows example ESD waveforms for a CDM, an HBM, and the IEC model. It is apparent that the IEC model’s pulse carries much more energy than the pulse of each device-level model.

How a TVS protects a system against ESD events

Instead of integrated structures for ESD protection, the model specified by the IEC 61000-4-2 standard usually uses discrete stand-alone transient-voltage-suppressant diodes, or transient-voltage suppressors (TVSs). Compared to ESD-protection structures integrated into a power-management or microcontroller unit, stand-alone TVSs are low in cost and can be placed close to the system’s I/O connector, as shown in Figure 2.
There are two types of TVSs: bidirectional and unidirectional (see Figure 3). The Texas Instruments TPD1E10B06 is an example of a bidirectional TVS that can be placed on a general-purpose data line for system-level ESD protection. Both bidirectional and unidirectional TVSs are designed to be an open circuit during normal operating conditions, and a short to ground during an ESD event. In the case of a bidirectional TVS, a voltage signal on the I/O line can swing above and below ground as long as neither D1 nor D2 enters its breakdown region. When an ESD strike (positive or negative) hits the I/O line, one diode becomes forward-biased and the other breaks down, creating a path in which ESD energy is immediately dumped to ground. In the case of a unidirectional TVS, a voltage signal can swing above ground as long as neither D2 nor Z1 enters its breakdown region. When a positive ESD strike hits the I/O line, D1 becomes forward-biased and Z1 enters its breakdown region before D2 does; a path to ground is created through D1 and Z1 in which ESD energy is dissipated. When a negative ESD strike hits, D2 becomes forward-biased and ESD energy is dissipated through D2 to ground. Unidirectional diodes are implemented for high-speed applications because D1 and D2 can be sized smaller with less parasitic capacitance; D1 and D2 in turn “hide” the bigger Zener diode, Z1, which is sized bigger in order to handle more current in its breakdown region.

Key device parameters for system-level ESD protection

Figure 4 shows the characteristics of a TVS diode’s current versus voltage. Even though a TVS is a simple structure, several important parameters should be considered in the design of system-level ESD protection. These include breakdown voltage, \(V_{BR} \); dynamic resistance, \(R_{DYN} \); clamping voltage, \(V_{CL} \); and capacitance.

Breakdown voltage

The first step in selecting the appropriate TVS is looking at the breakdown voltage (\(V_{BR} \)). For example, if the maximum working voltage, \(V_{RWM} \), on the protected I/O line is 5 V, the TVS should not enter into its breakdown region before reaching this maximum. More often than not, a TVS datasheet includes \(V_{RWM} \) at a specific leakage current, which makes choosing the right TVS easy. If that is not the case, a TVS can be selected whose \(V_{BR(min)} \) is a couple of volts higher than the \(V_{RWM} \) of the protected I/O line.

Dynamic resistance

An ESD is an ultrafast event in the range of nanoseconds. During such a short amount of time, the TVS conduction path to ground is not established instantaneously and there is some resistance in this path. This resistance, known as dynamic resistance (\(R_{DYN} \)), is shown in Figure 5.
Ideally, R_{DYN} should be zero so that voltage on the I/O line can be clamped as close to the V_{BR} as possible; however, that is never the case. The industry’s current standard value for R_{DYN} is 1 Ω or less. R_{DYN} can be captured by using transmission-line pulse-measurement techniques, where a charged voltage is discharged through the TVS and a corresponding current is measured. After many data points with different charged voltages have been taken, an IV curve like the one in Figure 6 can be drawn, and the slope is R_{DYN}. Figure 6 shows the TPD1E10B06’s R_{DYN} which has a typical value of ~0.3 Ω.

Clamping voltage

Since an ESD is an ultrafast transient event, the voltage on the I/O line is not clamped instantaneously. As shown in Figure 7, thousands of volts are clamped to tens of volts according to the IEC 61000-4-2 standard. As indicated by Equation 1, the lower R_{DYN} is, the better the clamping performance will be:

$$V_{\text{CL}} = V_{BR} + I_{PP} \times R_{\text{DYN}} + I_{\text{Parasitic}} \times \frac{dI_{PP}}{dt}. \quad (1)$$

where I_{PP} is the peak pulse current during an ESD event, and $I_{\text{Parasitic}}$ is the parasitic inductance of the trace from the connector through the TVS to ground.

Imagine the area under the clamping-voltage waveform as energy. The better the clamping performance is, the less likely it is that an ESD-sensitive device under protection will be damaged during an ESD event. Due to poor clamping voltage, some TVSs survive an IEC model’s 8-kV contact discharge, but the “protected” device is destroyed.

Capacitance

During normal operating conditions, the TVS acts as an open circuit and has a parasitic-capacitance shunt to ground. It is important for the designer to take this capacitance into account in the signal chain’s bandwidth budget.

Conclusion

As IC process-technology nodes continue to become smaller, they become increasingly more susceptible to ESD damage, both during the manufacturing process and in the end-user environment. Device-level ESD protection is not enough to protect ICs on a system level. Stand-alone TVSs should be used in a system-level design. When selecting a TVS, the designer should pay careful attention to parameters such as V_{BR}, R_{DYN}, V_{CL}, and capacitance.

Reference

For more information related to this article, you can download an Acrobat® Reader® file at www.ti.com/lit/litnumber and replace “litnumber” with the TI Lit. # for the materials listed below.

Document Title

1. “System-level ESD/EMI protection guide”...SSZB130B

Related Web sites

www.ti.com/esd

www.ti.com/product/TPD1E10B06
TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center
Home Page
support.ti.com

TI E2E™ Community Home Page
e2e.ti.com

Product Information Centers

Americas

Phone +1(972) 644-5580
Brazil

Phone 0800-891-2616
Mexico

Phone 0800-670-7544
Fax +1(972) 927-6377
Internet/Email support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone

European Free Call 00800-ASK-TEXAS
(00800 275 83927)
International +49 (0) 8161 80 2121
Russian Support +7 (4) 95 98 10 701

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Fax +49 (0) 8161 80 2045
Internet www.ti.com/asktexas
Direct Email asktexas@ti.com

Asia

Phone

International +91-80-41381665
Domestic Toll-Free Number

Note: Toll-free numbers do not support mobile and IP phones.

Australia 1-800-999-084
China 800-820-8682
Hong Kong 800-96-5941
India 1-800-425-7888
Indonesia 001-803-8861-1006
Korea 080-551-2804
Malaysia 1-800-80-3973
New Zealand 0800-446-934
Philippines 1-800-765-7404
Singapore 800-886-1028
Taiwan 0800-006800
Thailand 001-800-886-0010
Fax +8621-23073686
Email tiasia@ti.com or ti-china@ti.com
Internet support.ti.com/sc/pic/asia.htm

Japan

Phone

Domestic 0120-92-3326
Fax

International +81-3-3344-5317
Domestic 0120-81-0036
Internet/Email

International support.ti.com/sc/pic/japan.htm
Domestic www.ti.co.jp/pic

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

© 2012 Texas Instruments Incorporated

E2E is a trademark of Texas Instruments. Acrobat and Reader are registered trademarks of Adobe Systems Incorporated. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>www.ti.com/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
<td>www.ti.com/consumer-apps</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TEE2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>