Isolated sensing systems with low power consumption

By Jose Duenas
Applications Engineer

Tom Hendrick
Applications Engineer

Current-shunt-monitor (CSM) ICs have been a mainstay in industrial applications for many years. Designed for either unidirectional or bidirectional current monitoring, CSMs offer excellent performance when used in either high-side or low-side current-shunt applications. However, many modern applications require some level of insulation to protect the end user from hazardous voltages.

The level of insulation that a particular circuit needs is driven mainly by the type of end equipment and where the end equipment will be deployed. For instance, is the end equipment a solar inverter to be mounted on a roof top or is it part of a servo motor drive used on an industrial robot? Global location of the end equipment plays a part as well. In the United States the Underwriters Laboratory (UL) maintains safety standards for various end-equipment. For Canada, it is the Canadian Standards Association (CSA). Europe has the International Electromechanical Commission (IEC) and the Association for Electrical, Electronic and Information Technologies (referred to as the VDE).

There are four main categories of insulation. The first is functional, which offers no protection against electric shock. As the name implies, functional insulation is provided to allow proper operation of a circuit or device. Think of this as the minimum trace spacing across a printed circuit board from a shunt resistor to the input terminals of the monitoring device.

The second level of insulation is basic. Basic insulation relates to the ability of an isolation device (an optocoupler or digital isolator, for example) to provide a level of protection against electric shock across an isolation barrier. Next is supplemental or double insulation. This is an independent insulation layer that is applied in addition to basic insulation to ensure protection against electric shock in the event that the basic insulation fails. This is similar to adding a section of heat-shrink tubing over an input wiring harness. The fourth category is reinforced insulation. Reinforced insulation is a single insulation system that provides a level of protection against electric shock equal to double insulation.

For a typical insulation example, the AMC1305 is a precision, delta-sigma ($\Delta\Sigma$) modulator with the output separated from the input circuitry by a capacitive isolation barrier that is highly resistant to magnetic interference. This barrier is certified to provide reinforced isolation of up to 7000 V_{PK}, according to the VDE V 0884-10, UL1577, and CSA standards. As shown in Figure 1, the isolation barrier of this device is constructed with two series capacitors, each having an equivalent of basic insulation through a silicon dioxide (SiO_2) layer of 13.5 μm (27 μm total). The surge immunity is rated to $\pm10,000$ V and the working voltage is 1500 VDC and 1000 VRMS, respectively.

Unlike traditional CSM devices that provide an analog output, the AMC1305 provides a digital bit stream. The differential analog input is a switched-capacitor circuit feeding a second-order delta-sigma modulator stage that digitizes the input signal into a 1-bit output stream. The converter’s isolated output (DOUT) provides a digital bit-stream of ones and zeroes that are synchronous to an externally provided clock source at the CLkin pin. The output bit-stream can be fed directly to the SD-24B module of an MSP430™ microcontroller (MCU) or the sigma-delta filter module (SDFM) of a C2000™ Delfino™ TMS320F2837x MCU.

In addition to dictating the level of isolation required, the type of application determines how many currents and voltages need to be monitored. In many cases, the variables of a polyphase system are monitored. One of the most common types of polyphase system is the three-phase case. Typically, three currents and three voltages could be measured in three-phase systems, and sometimes a fourth voltage is measured, primarily in cases where a connection to neutral or ground is available.

Supplying power to the sensing circuitry is greatly simplified when the variables measured in a polyphase system have low common-mode voltages with respect to a common reference point. This could be the case when performing low-side current measurements and voltage measurements using resistive dividers. However, many systems require measuring currents and voltages that can
have significantly different common-mode components. In such cases, isolated power supplies are required and the design becomes a bit more complex.

Consider the system depicted in Figure 2. There are seven circuit functions that could be monitored: Three line currents, three phase-to-phase voltages and one common-to-ground voltage. For simplicity, only three current shunts (Rs) are depicted and the divider circuits for voltage measurement are not shown.

Depending upon which power transistors (elements labeled 1 through 6) are conducting, the common-mode voltage of the shunt resistors can be either near the full DC-Link voltage or near ground potential.

In order to take advantage of a design using isolated delta-sigma modulators, each of the seven monitoring circuits require a separate isolated power supply for the high side of the delta-sigma modulators. The term "high side" is often used to refer to the analog input side of the galvanic isolation barrier.

For example, in a system with a 48-V DC-Link voltage, one approach to design the required power supply could start by producing 3.3 VDC from the 48-VDC source with a buck-bias, step-down switching regulator (Figure 3). Figure 4 shows how a second stage could generate an isolated 5-VDC supply from the 3.3-VDC supply with a small isolation transformer in conjunction with a transformer driver.
Table 1 compares two scenarios. In one scenario, seven AMC1305 units were used for monitoring. Figures 3 and 4 show the circuits that fulfilled the power requirements for the design with seven AMC1305 devices. The second scenario used an alternative device for the delta-sigma modulator and different components were used for the 48-V to 3.3-V power section.

The alternative-device scenario shows the implications of using seven units of a device that has higher power consumption on its analog input side (high side).

TI’s family of isolated delta-sigma modulators includes some components with a specified input range of ±250 mV and others of ±50 mV. Compared to devices with a higher input range, devices with a lower input range allow system designers to reduce power dissipation in the sensing-current shunt by 80%.

Using a low-power, isolated-sensing solution brings about more efficient acquisition systems (from an energy point of view) as well as better performance. The greatest impact that higher power consumption can have in the acquisition system’s performance is in gain-error drift and offset-error drift. An isolated delta-sigma modulator with higher power consumption is bound to experience a higher internal temperature rise during normal operation. Moreover, the ambient temperature of the isolated delta-sigma modulator is bound to be higher for systems with power-management circuitry that is tasked to deliver more than three times more power. The combination of higher internal and ambient temperatures in systems with higher power consumption yields solutions with more errors and poorer signal-to-noise ratio (SNR).

Table 1. A comparison between two acquisition systems based on isolated delta-sigma modulators

<table>
<thead>
<tr>
<th>ISOLATED DELTA-SIGMA MODULATOR</th>
<th>IAVDD (max) (mA)</th>
<th>UNITS PER SYSTEM</th>
<th>SUM OF CURRENTS REQUIRED IN THE 5-VDC BUSSES (mA)</th>
<th>EFFICIENCY OF THE 3.3-VDC TO 5-VDC STAGE (%)</th>
<th>POWER REQUIRED ON THE 3.3-V BUS (W)</th>
<th>CURRENT REQUIRED FROM THE 3.3-V BUS (A)*</th>
<th>POWER DRAWN FROM THE 48-VDC BUS (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC1305</td>
<td>7</td>
<td>7</td>
<td>49</td>
<td>54</td>
<td>0.45</td>
<td>0.155</td>
<td>0.69</td>
</tr>
<tr>
<td>Alternative Device</td>
<td>36</td>
<td>7</td>
<td>252</td>
<td>74</td>
<td>1.7</td>
<td>0.57</td>
<td>2.27</td>
</tr>
</tbody>
</table>

* An additional 10% to 12% margin has been added to the current requirement.

The best-in-class drift performance provided by the AMC1305 reduces temperature dependency and yields higher system performance over a wider temperature range. Also, gain-error drift is cut by as much as 58% and offset drift by 74% when compared to the closest competitor.

Conclusion

Many modern applications require isolation. The specific isolation level needed is driven by the type of end equipment in question and the regulatory body certifying the equipment.

Although power consumption is sometimes neglected as a key design criterion, the performance and efficiency of isolated sensing systems can be greatly improved by carefully selecting devices that have high-precision, isolated front-ends with optimized power-consumption specifications, such as the TI family of AMC1305 products.

Related Web sites

- www.ti.com/4q14-AMC1305M05
- [C2000™ Delfino™ MCU](http://www.ti.com/delfino)
- www.ti.com/delfino

Subscribe to the AAJ:
- www.ti.com/subscribe-aaj
TI Worldwide Technical Support

Internet
TI Semiconductor Product Information Center
Home Page
support.ti.com

TI E2E™ Community Home Page
e2e.ti.com

Product Information Centers

America

<table>
<thead>
<tr>
<th>Phone</th>
<th>Phone</th>
<th>Fax</th>
<th>Internet/Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1(512) 434-1560</td>
<td>0800-891-2616</td>
<td>+1(972) 927-6377</td>
<td>support.ti.com/sc/pic/americas.htm</td>
</tr>
</tbody>
</table>

Europe, Middle East, and Africa

<table>
<thead>
<tr>
<th>Phone</th>
<th>Toll-Free Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Free Call: 00800-ASK-Texas (00800 275 83927)</td>
<td>Australia 1-800-999-084</td>
</tr>
<tr>
<td>International: +49 (0) 8161 80 2121</td>
<td>China 800-820-8682</td>
</tr>
<tr>
<td>Russian Support: +7 (4) 95 98 10 701</td>
<td>Hong Kong 800-96-5941</td>
</tr>
</tbody>
</table>

Asia

<table>
<thead>
<tr>
<th>Phone</th>
<th>Toll-Free Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>International: +86-21-23073444</td>
<td>Australia 1-800-999-084</td>
</tr>
<tr>
<td>Fax: +86-21-23073686</td>
<td>China 800-820-8682</td>
</tr>
<tr>
<td>Email: tiasia@ti.com or ti-china@ti.com</td>
<td>Hong Kong 800-96-5941</td>
</tr>
<tr>
<td>Internet: support.ti.com/sc/pic/asia.htm</td>
<td>Indonesia 001-803-8861-1006</td>
</tr>
</tbody>
</table>

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

© 2014 Texas Instruments Incorporated. All rights reserved.

C2000, Delfino, E2E and MSP430 are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

- **Audio**: www.ti.com/audio
- **Amplifiers**: amplifier.ti.com
- **Data Converters**: dataconverter.ti.com
- **DLP® Products**: www.dlp.com
- **DSP**: dsp.ti.com
- **Clocks and Timers**: www.ti.com/clocks
- **Interface**: interface.ti.com
- **Logic**: logic.ti.com
- **Power Mgmt**: power.ti.com
- **Microcontrollers**: microcontroller.ti.com
- **RFID**: www.ti-rcfid.com
- **OMAP Applications Processors**: www.ti.com/omap
- **Wireless Connectivity**: www.ti.com/wirelessconnectivity

Applications

- **Audio and Video**: [www.ti.com/av+</http://www.ti.com/av>]
- **Automotive and Transportation**: www.ti.com/automotive
- **Communications and Telecom**: www.ti.com/communications
- **Consumer Electronics**: www.ti.com/consumer-electronics
- **Energy and Lighting**: www.ti.com/energy
- **Industrial**: www.ti.com/industrial
- **Medical**: www.ti.com/medical
- **Security**: www.ti.com/security
- **Space, Avionics and Defense**: www.ti.com/space-avionics-defense
- **Video and Imaging**: www.ti.com/video
- **TI E2E Community**: e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated