Linear operating region of two-op-amp instrumentation amplifiers with gain stages

By Pete Semig
Analog Applications Engineer, Precision Amplifiers

Introduction
The linear operating region of instrumentation amplifiers depends on numerous factors that include topology, supply voltage, common-mode voltage (V_{CM}), output voltage (V_{OUT}), gain (G), and reference voltage (V_{REF}). Operation outside or on the edge of this region is the most common issue with instrumentation amplifiers found in the TI E2E™ Community. Such operation yields forum posts that describe distorted output waveforms, incorrect device gain, or ‘stuck’ outputs. When such behaviors are observed, it is important to verify that the device is operating within the linear region.

The three primary topologies of instrumentation amplifiers that require discussion of their linear operating regions are: three-op-amp, two-op-amp, and two-op-amp with gain stage. The linear operating regions of the first two topologies are well documented in a three-part article series, blog post, and Analog Applications Journal article.[1-3]

This article analyzes the instrumentation-amplifier topology with two operational amplifiers (op amps) and a gain stage (GS), including its linear operating region as defined by the V_{CM} vs. V_{OUT} plot. Additionally, the internal node equations are derived and used to plot the swing limits of the input common-mode and output of each internal amplifier as a function of the common-mode voltage of the instrumentation amplifier.

The V_{CM} vs. V_{OUT} plot
The V_{CM} vs. V_{OUT} plot of an instrumentation amplifier captures the common-mode and output-swing limitations of all internal op amps. A typical V_{CM} vs. V_{OUT} plot for a two-op-amp instrumentation amplifier with gain stage is shown in Figure 1. In order to create the plot shown in Figure 1, the device’s input pins were shorted together to ensure a differential input of 0 V. The common-mode voltage was then swept from 0 V to 5 V for different values of the reference voltage, hence the term “REF increasing” in the figure.

Notice, however, that this plot is actually V_{OUT} vs. V_{CM}, which is contrary to the other two instrumentation amplifier topologies. While there is no particular reason for this orientation, the plot still defines the linear operating region of the device. Note that the orientation of the axes also depends on the semiconductor manufacturer.

Operating outside of the boundaries results in non-linear operation of the device as shown in Figure 2.
Analysis of a two-op-amp instrumentation amplifier with gain stage

Figure 3 depicts the topology of a typical two-op-amp instrumentation amplifier with gain stage. This topology has high input impedance and requires two resistors, R_1 and R_2, to set the gain.

One issue to consider is that the signal-path imbalance from $V_{\text{+IN}}$ and $V_{\text{-IN}}$ to the output can degrade the device’s common-mode rejection ratio (CMRR) performance (Figure 4). In general, three-op-amp instrumentation amplifiers have a minimum DC CMRR of 100 dB, whereas the two-op-amp topologies have a DC CMRR of less than 100 dB. The degradation in CMRR is one of the primary reasons why the two-op-amp instrumentation amplifiers typically cost less than their three-op-amp counterparts.

Notice in Figure 4 that the CMRR curve does not change with gain, which is unlike the three-op-amp and the other two-op-amp instrumentation amplifiers. This is because CMRR is defined as the ratio of differential gain to common-mode gain. Since the differential gain of this instrumentation amplifier topology is fixed by the integrated resistors, CMRR does not change with gain.

The transfer function for the topology shown in Figure 3 is given by Equation 1.

$$V_O = (V_{\text{+IN}} - V_{\text{-IN}}) \times G + V_{\text{REF}} = V_D \times G + V_{\text{REF}}$$

(1)

This transfer function is now derived to help understand the linear operating region of this topology. The first step is to determine the relationship between the integrated resistors ($R_{\text{FA1}}, R_{\text{FA2}}, R_{\text{OA1}},$ and R_R) such that the gain applied to V_{REF} by the two-op-amp instrumentation amplifier is 1 V/V. To do this, a reference voltage is applied to the V_{REF} terminal and the $V_{\text{+IN}}$ and $V_{\text{-IN}}$ inputs are grounded (Figure 5).

Amplifier A1 applies an inverting gain to V_{REF} (Equation 2):

$$V_{\text{OA1}} = V_{\text{REF}} \times \left(-\frac{R_{\text{FA1}}}{R_R}\right)$$

(2)

Amplifier A2 applies an inverting gain to the output of amplifier A1 (Equation 3).

$$V_{\text{OA2}} = V_{\text{OA1}} \times \left(-\frac{R_{\text{FA2}}}{R_{\text{OA1}}}\right)$$

(3)

Substituting Equation 2 into Equation 3 yields Equation 4:

$$V_{\text{OA2}} = V_{\text{REF}} \times \left(-\frac{R_{\text{FA1}}}{R_R}\right) \times \left(-\frac{R_{\text{FA2}}}{R_{\text{OA1}}}\right)$$

(4)
The gain applied by the two-op-amp instrumentation amplifier to the reference voltage should be 1 V/V. To fulfill this requirement, set $R_{FA2} = R_R$ and $R_{FA1} = R_{OA1} = R_F$.

Figure 6 is a simplified version of Figure 5 to help show the effects of amplifier A3 on the reference voltage. Amplifier A3 applies both an inverting (INV) and non-inverting (NI) gain to the reference voltage as given by Equations 5 and 6.

$$V_{O-NI} = V_{REF} \times \left(1 + \frac{R_2}{R_1}\right)$$

$$V_{O-NI} = V_{REF} \times \left(-\frac{R_2}{R_1}\right)$$

Equation 7 uses superposition to show that there is no gain applied to the reference voltage by amplifier A3.

$$V_O = V_{O-NI} + V_{O-NI} = V_{REF} \times \left(1 + \frac{R_2}{R_1} - \frac{R_2}{R_1}\right) = V_{REF}$$

Figure 7 depicts the updated schematic that results in unity gain for the reference voltage. An input signal composed of a common-mode (V_{CM}) and differential-mode (V_D) voltage is added. Finally, all of the internal nodes are labeled for later analysis.

Each amplifier in Figure 7 inputs two signals; therefore, inverting gain and non-inverting gain applies. This yields six gain terms, as shown in Equations 8 through 13.

$$G_{A1_INV} = \frac{-R_F}{R_R}$$

$$G_{A1_NI} = \frac{R_R + R_F}{R_R} = 1 + \frac{R_F}{R_R}$$

$$G_{A2_INV} = \frac{-R_R}{R_F}$$

$$G_{A2_NI} = \frac{R_F + R_R}{R_F} = 1 + \frac{R_R}{R_F}$$

$$G_{A3_INV} = \frac{-R_2}{R_1}$$

$$G_{A3_NI} = \frac{R_1 + R_2}{R_1} = 1 + \frac{R_2}{R_1}$$

Two important relationships between these gains are given by Equations 14 and 15.

$$G_{A1_INV} \times G_{A2_INV} = 1$$

$$G_{A1_NI} \times G_{A2_INV} = -G_{A2_NI}$$

Equations 16 through 18 define the output voltages of each amplifier.

$$V_{OA1} = V_{-IN} \left(G_{A1_NI}\right) + V_{REF} \left(G_{A1_INV}\right)$$

$$V_{OA2} = V_{+IN} \left(G_{A2_NI}\right) + V_{OA1} \left(G_{A2_INV}\right)$$

$$V_{OA3} = V_O = V_{OA2} \left(G_{A3_NI}\right) + V_{REF} \left(G_{A3_INV}\right)$$
Using Equations 14 through 18, the final transfer function for a two-op-amp instrumentation amplifier with gain stage is shown in Equation 19. It is consistent with Equation 1. Note that $G = G_{A2-NI} \times G_{A3-NI}$.

$$V_O = (V_{+IN} - V_{-IN}) \times (G_{A2-NI} \times G_{A3-NI}) + V_{REF}$$

$$= V_D \times \left(1 + \frac{R_R}{R_F}\right) \times \left(1 + \frac{R_2}{R_1}\right) + V_{REF}$$

Op-amp limitations

Linear operation of an instrumentation amplifier is contingent upon the linear operation of its primary building block: op amps. An op amp operates linearly when the input and output signals are within the device’s input common-mode and output-swing ranges, respectively. The supply voltages used to power the op amp (V_+ and V_-) define these ranges (Figure 8).

Figure 8: Op-amp input common-mode (V_{CM}) and output-swing (V_{OUT}) ranges

A real-world example of common-mode and output-swing limits is shown in Figure 9. Notice that the common-mode range and output-swing range are not necessarily the same.

Figure 9: Op-amp V_{CM} and V_{OUT} ranges for a 3.3-V supply

$V_+ = 3.3\text{ V}$

$-100\text{ mV} < V_{CM} < 3.4\text{ V}$

$V_0 = 50\text{ mV} < V_{OUT} < 3.25\text{ V}$

$V_- = 0\text{ V}$

Two-op-amp with gain-stage node equations

With a solid understanding of the two-op-amp instrumentation amplifier with gain stage and op-amp limitations, the next step is to examine the node equations shown in Figure 7. The equations for V_{OA1}, V_{OA2}, and V_{OA3} are already given by Equations 16 through 18. Equations for V_{IA1} and V_{IA2} are given below.

$$V_{IA1} = V_{-IN} = V_{CM} - \frac{V_D}{2}$$

$$V_{IA2} = V_{+IN} = V_{CM} + \frac{V_D}{2}$$

The plot of the linear operating region can vary based on gain and reference voltage. Therefore, Equations 16 through 18 and 20 through 21 must be solved for V_O as a function of the gain terms, V_{CM}, and V_{REF}. A useful relationship is obtained by solving Equation 1 for V_D, as shown in Equation 22.

$$V_O = V_D \times G + V_{REF} \Rightarrow V_D = \frac{V_O - V_{REF}}{G}$$

After making all of the proper substitutions and solving for V_O, Equations 23 through 27 capture the linear operating region of a two-op-amp instrumentation amplifier with gain stage at the output (V_O) as a function of the gain terms, V_{CM}, V_{REF}, and the common-mode and output limitations of each amplifier (V_{IA1}, V_{IA2}, V_{IA3}, V_{OA1}, V_{OA2}, V_{OA3}).

$$V_{O_{IA1}} = 2G \times (V_{CM} - V_{IA1}) + V_{REF}$$

$$V_{O_{IA2}} = 2G \times (V_{IA2} - V_{CM}) + V_{REF}$$

$$V_{O_{OA1}} = 2V_{CM}G + 2G A_{3-NI}$$

$$\times (V_{OA1} A_{2-INV} - V_{REF}) + V_{REF}$$

$$V_{O_{OA2}} = V_{O_{IA3}}$$

$$= G A_{3-NI} \times (V_{OA2} - V_{REF}) + V_{REF}$$

$$V_{O_{OA3}} = V_{OA3}$$

In order to operate in a linear region, the voltage at V_{IA1} must not violate the input common-mode range of $A1$. Similarly, the voltage at node V_{OA1} must not violate the output swing limitation of $A1$. The same holds true for the common-mode and output-swing limitations of $A2$ and $A3$. The limitations of the internal amplifiers are usually obtained by inspecting the device’s data sheet and/or measuring the linear operating region in the lab.
Figure 10 depicts a TINA-TI™ simulation that plots Equations 23 through 27 for both the maximum and minimum common-mode and output-swing limits for the internal amplifiers of the INA331. The linear operating region is the interior of all lines.

The software tool introduced in Reference 3 was modified to include the ability to plot the linear operating region of two-op-amp instrumentation amplifier with gain stages (for example, INA321, INA322, INA331, and INA332). This simplifies the creation of the plots for varying gains, reference voltages, and supply voltages. See Related Web sites for a download link to the tool. Figure 11 depicts the plot for the INA331 given standard data sheet conditions. Notice that after rotating and mirroring the plot, it compares well with Figures 1 and 10. Finally, note that the software tool can be downloaded to generate the linear operating region of all three instrumentation amplifier topologies.

Conclusions

The high frequency of questions on the TI E2E™ Community concerning the linear operating region of instrumentation amplifiers, often referred to as V_{CM} vs. V_{OUT} plots, shows that user interpretation is often misunderstood. The analysis of the two-op-amp instrumentation amplifier with gain stage set forth in this article, as well as References 1 through 4 below, can shorten the time required to locate problems with instrumentation amplifier designs. Furthermore, to simplify the task of ensuring linear operation of instrumentation amplifiers in future designs, download and install the free tool, V_{CM} vs. V_{OUT} plot generator.

References

2. Peter Semig, "How Instrumentation Amplifier V_{CM} vs. V_{OUT} Plots change with supply and reference voltage," TI Precision Hub blog, January 30, 2015
3. Peter Semig, "V_{CM} vs. V_{OUT} plots for Instrumentation amplifiers with two op amps," Analog Applications Journal (SLYT647), 4Q 2015
4. Peter Semig, "Why doesn’t my INA CMRR change with gain?" TI Precision Hub blog, February 28, 2014

Related Web sites

Software tool: V_{CM} vs. V_{OUT} plot generator

Product information: INA331

Acknowledgements

The author would like to thank Art Kay at Texas Instruments for developing the V_{CM} vs. V_{OUT} software tool, and Shreenidhi Patil and Collin Wells for their technical contributions to this article.
TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center

Home Page
Support.ti.com

TI E2E™ Community Home Page
e2e.ti.com

Product Information Centers

<table>
<thead>
<tr>
<th>Region</th>
<th>Phone</th>
<th>Fax</th>
<th>Internet/Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>0800-891-2616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>0800-670-7544</td>
<td>+1(972) 927-6377</td>
<td>support.ti.com/sc/pic/americas.html</td>
</tr>
<tr>
<td>Europe, Middle East, and Africa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe Free Call</td>
<td>00800-ASK-TEXAS</td>
<td></td>
<td>www.ti.com/asktexas</td>
</tr>
<tr>
<td>International</td>
<td>+49 (0) 8161 80 2121</td>
<td></td>
<td>asktexas@ti.com</td>
</tr>
<tr>
<td>Russian Support</td>
<td>+7 (4) 95 98 10 701</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

<table>
<thead>
<tr>
<th>Region</th>
<th>Phone</th>
<th>Toll-Free Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>1-800-999-084</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>800-820-8682</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>800-96-5941</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>000-800-100-8888</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>001-803-8861-1006</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>080-551-2804</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>1-800-80-3973</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>0800-446-934</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>1-800-765-7404</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>800-886-1028</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>0800-006800</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>001-800-886-0010</td>
<td></td>
</tr>
<tr>
<td>Russian Support</td>
<td>+7 (4) 95 98 10 701</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax</td>
<td>+(49) (0) 8161 80 2045</td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td>www.ti.com/asktexas</td>
<td></td>
</tr>
<tr>
<td>Direct Email</td>
<td>asktexas@ti.com</td>
<td></td>
</tr>
</tbody>
</table>

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>Amplifiers</th>
<th>Data Converters</th>
<th>DLP® Products</th>
<th>DSP</th>
<th>Clocks and Timers</th>
<th>Interface</th>
<th>Logic</th>
<th>Power Mgmt</th>
<th>Microcontrollers</th>
<th>RFID</th>
<th>OMAP Applications Processors</th>
<th>Wireless Connectivity</th>
</tr>
</thead>
</table>

Applications

<table>
<thead>
<tr>
<th>Automotive and Transportation</th>
<th>Communications and Telecom</th>
<th>Computers and Peripherals</th>
<th>Consumer Electronics</th>
<th>Energy and Lighting</th>
<th>Industrial</th>
<th>Medical</th>
<th>Security</th>
<th>Space, Avionics and Defense</th>
<th>Video and Imaging</th>
<th>Video</th>
<th>TI E2E Community</th>
<th>e2e.ti.com</th>
</tr>
</thead>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated