ABSTRACT
This application report discusses how the performance of high-speed pipeline ADCs can be optimized by designing the right clock circuitry, a good analog input network, as well as how to get the data at these high speeds undistorted from the ADC onto an FPGA or ASIC.

Contents
1 Introduction .. 2
2 Clock Jitter – the Enemy to SNR Performance ... 2
3 Subsampling Pitfalls ... 3
4 ADC Clock Receiver .. 4
5 The Input Network .. 4
 5.1 Frequency Sweeps Illustrating SFDR Performance With Different Filter Settings 6
6 Decoupling .. 7
7 Output Interface .. 7
8 Conclusion .. 8

List of Figures
1 11-14 bit ADC SNR Performance and Jitter Limits ... 2
2 Swing Time vs rms Jitter of a Differential Clock and Single-Ended Clock 4
3 Example Circuit to Drive the Input of the ADC14V155 ... 5
1 Introduction

The performance of integrated high-speed pipeline analog-to-digital converters (ADCs) is reaching new heights. Resolution, sampling speed, and dynamic performance have pushed to new limits. The ADC14V155 is amongst the best-in-class converters, delivering 57 percent higher full-power bandwidth than competing 14-bit ADCs. The challenge is to keep the static and especially dynamic performance at the levels that are given in the device-specific data sheet. Designers must select components around the converter very carefully.

One application example is the ADC14V155 that has a resolution of 14 bits and samples at up to 155 MSPS. It uses differential pipeline architecture and its unique low jitter sample-and-hold stage yields a full power bandwidth of 1.1 GHz. This high input bandwidth makes it a very good candidate for all types of communication receivers, but especially for undersampling. The device can sample signals up to 450 MHz bandwidth, providing flexibility for the system frequency planning and allowing migration from single carrier architectures to a multi-carrier approach where a single ADC digitizes several carriers.

Another area where this ADC can be used is for fast test and measurement equipment. Data leaves the chip on a parallel low voltage differential signaling (LVDS) interface in a dual data rate (DDR) format to allow clean data transmission onto modern FPGAs. To further reduce noise and power the device features a separate power supply for the output interface (1.8V) and the analog section (3.3V). Typically the device uses under one Watt power. At input frequencies of 70 MHz, the part typically performs with a signal-to-noise ratio (SNR) of 71.7dBFS and spurious free dynamic range (SFDR) of 86.9dBFS.

2 Clock Jitter – the Enemy to SNR Performance

At high input frequencies and resolution, clock jitter/data jitter becomes one of the biggest limitations to ADC SNR performance. The maximum jitter without degrading SNR must be below the quantization noise \((1/2\text{LSB})\) and can be calculated as:

\[
T_{j(\text{rms})} = \left(\frac{V_{\text{IN(p-p)}}}{V_{\text{INFSR}}} \right) \left(\frac{1}{2^{N+1}} \right) \left(f_{\text{in}} \right)
\]

When the input voltage swing \(V_{\text{IN(p-p)}}\) is optimized to swing full scale the first term becomes one and jitter is only dependant on resolution \((N)\) and input frequency \((f_{\text{in}})\). Measurements of SNR performance on ADCs with 11-14-bit resolution shows that for input frequencies above 100 MHz the total system jitter should be no more than 200 fs for the 11-bit ADC and around 100 fs for the ADC14V155 (11.5 ENOB).

![Figure 1. 11-14 bit ADC SNR Performance and Jitter Limits](image-url)
Using that information can help target what the clock source specification and design to implement. Most clock products are defined by their frequency and phase noise, found in the device-specific data sheets plots. Phase noise and jitter are describing the same phenomenon or problem where phase noise is represented in the frequency domain and jitter is derived from it by integrating the phase noise plot. Consequently, it provides a good insight on what causes jitter on the ADC clock, which then can be addressed and eliminated by subsequent circuit design. A good start is to divide the diagram into the two areas: close-in phase noise and broadband noise. Broadband noise can easily be filtered out, so we have to concentrate on the close-in phase noise. A clock source is needed which has low close-in noise and it should roll off as steeply as possible at the lowest offset.

The reason why broadband noise has to be filtered out is that the signal on the ADC clock input is convolved with the analog input. The very high input bandwidth of 1.1 GHz of the ADC14V155 is matched with a very high clock input bandwidth. That means that a lot of the broadband noise from the clock source, if not filtered away, will alias back into the first Nyquist zone and may degrade SNR.

3 Subsampling Pitfalls

If subsampling is used, you might even be caught by another trap. Subsampling refers to the situation where the clock frequency is more than twice the signal frequency, which violates the Nyquist theorem of \(f_s \) should be greater than two times \(f_i \) to avoid aliasing. Subsampling causes the signal and its harmonics to alias back into the first Nyquist band, but as long as we know which frequencies they are aliased to, a frequency plan can be layed out in a way such that the signal of interest is not corrupted by aliased harmonic spurs.

One popular frequency plan is to use an input frequency that aliases to \(f_s/4 \). In this frequency plan, all of the harmonics will alias to DC, \(f_s/4 \) or \(f_s/2 \). The benefit of this plan is that it gives the biggest separation between harmonic distortion spurs, which simplifies filtering and it centers the fundamental frequency in the Nyquist band. However, this frequency plan also masks all of the ADC’s harmonic spurs by overlapping them and makes the ADC output spectrum look much better then it actually is. To see the true performance, you have to offset the input frequency by 0.1-1 MHz, which unmasks overlapping spurs.
4 ADC Clock Receiver

Unfortunately, even the clock receiver circuitry inside the ADC itself will generate some jitter. The reason for this is that any supply noise will change the clock receiver’s tripping point slightly and this noise will be converted into phase noise when a clock signal with finite slope is applied. This is an analogy of amplitude modulation (AM) to phase modulation (PM), where AM is the supply noise converted to PM clock noise, which is then jitter in the time domain view. The longer the transition time of the clock, the more jitter is added. Applying a high slew rate clock will minimize this effect. Consequently, a square wave clock input with fast transition times is the best choice and gives the best SNR.

Figure 2. Swing Time vs rms Jitter of a Differential Clock and Single-Ended Clock

In the lab and for testing concepts, high quality signal generators are the best option offering frequency agility. Once the frequency plan is fixed, a crystal oscillator provides the purest clock. If multiple clocks are required on the PCB, then one of the LMK03000/2000 series precision clock conditioners from Texas Instruments is a good choice.

5 The Input Network

In the selection and testing phase of an ADC, signal generators are used to drive the input. Clearly, the measured ADC performance are no better than the purity of the signal applied to its inputs. That means filtering of the signal generator output is mandatory to limit the generator’s harmonic distortion and noise from reaching the ADC inputs. A typical synthesizer second harmonic distortion (H2) will be between -40 dBc and -50 dBc while the ADC14V155 H2 at 238 MHz can be as low as -85 dBFS. It is recommended to use tunable bandpass filters like Trilithic VF series filters providing 90 dB 2nd and 3rd harmonic attenuation.

Filtering the input signal is certainly critical in the final product application. The ADC14V155 has an extremely wide input bandwidth of 1.1 GHz, which means it will sample the entire of spectrum including all unwanted noise components like described in the sampling pitfalls section. Even if the ADC samples only at 155 MHz, noise above this frequency will be aliased back into the first Nyquist band, which has a negative effect on SNR, but if you bandpass filter the input signal around its center frequency, the problem can be avoided.

In most practical examples, the ADC will be coupled to the input signal via a transformer and/or amplifier. Figure 3 shows a circuit example to drive the ADC14V155 using a DVGA LMH6515. Between the ADC and the amplifier a fourth order filter with 25 MHz bandwidth centered around 169 MHz is used. The resistors R16 and R19 provide input common mode bias to the ADC and set the load impedance of the filter. Be careful not to have the impedance too high, even though that reduces the filter attenuation, it also degrades SFDR. The best trade-off between ADC and amplifier distortion has been found to be 500Ω.
To maximize SFDR performance, an additional RC network can be used and tuned to the applications input frequency. The network consists of two serial resistors connected to the input pins of the ADC and a shunt capacitor. These resistors and the capacitor affect settling time due to disturbances from the sample and hold circuitry at the ADC input. The RC combination provides a last lowpass filter before the ADC and the cutoff frequency will impact noise rejection and harmonic attenuation. A higher value shunt capacitor will lower the cutoff frequency of the lowpass filter and will improve low frequency distortion (at the expense of input bandwidth.)
5.1 Frequency Sweeps Illustrating SFDR Performance With Different Filter Settings
The device-specific data sheet of the ADC14V155 shows 12.1Ω resistors and a 15 pF capacitor, which exhibits a good compromise over a wide fin range.

6 Decoupling

After selecting the right low jitter clock and providing a clean, filtered signal to the input of the ADC, there is one more area of focus. Noise can also couple into the ADC through its reference and supply pins. The best practices are to place the decoupling capacitors as close as possible to the ADC package and pins as possible. Every millimeter counts! At least two different capacitor values for decoupling must be used: 0.1 uF and 0.01 uF, and they have to be connected to the power and ground planes directly. Long traces introduce parasitic resistance and inductance must be avoided.

While measuring SNR and SFDR performance of the ADC14155 in both LLP and TQFP packages, lead length can be problematic if not addressed. Testing showed that with the leads length of the TQFP package, the decoupling caps must be placed on the back of the board directly under the reference and supply pin for optimal performance. SNR degraded almost 3 dB with top side decoupling and SFDR degraded over 3 dB.

7 Output Interface

Once we have converted our analog signal, we can present the result to a further processing step such as an FPGA or ASIC. For many years, CMOS output stages were used to transfer digitized data. The output level of a CMOS stage is load dependant and the signal is voltage mode. A single-ended type output means also no common-mode rejection of noise. With raising switching speeds, the current to drive capacitive loads increases, reducing CMOS voltage swing. At around 150 MHz the data transfer on a CMOS interface becomes unreliable. A new type of interface has to be used and LVDS is an excellent candidate.

An LVDS driver provides a constant current of 3.5 mA in a differential scheme. 100Ω termination resistors have to be used between the differential output lines as close as possible to the receiver pins. The ADC14V155 uses an interleaved DDR output scheme where odd bits are presented first and then even bits on the same pins. The outputs change state at rising AND falling clock edges. This saves 50% or 14 pins on the package and the same amount of connections on the receiving device. Besides the data pins, the Over-Range Indicator (OVR) and Data-Ready Strobe (DRDY) are provided in LVDS format.
8 Conclusion

The ADC14V155 is a new generation ADC with superior performance. This advanced device delivers high precision with a very wide bandwidth. The surrounding components play a critical role in determining the signal integrity to cascading stages. System performance can be achieved by following some key design and layout techniques.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that TI is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated