Application Note 277 The New MICRO-DAC Product Line for Microprocessor Systems

Literature Number: SNAA091
The New MICRO-DAC™
Product Line for
Microprocessor Systems

A second generation of the popular MDAC (or multiplying
dac) is now available which has been designed to provide
an easy interface to microprocessor systems. These new
micro-dac products are low power drain CMOS convert-
ers, which typically require only 0.5 mA supply current (2 mA
max) and draw only approximately 600 µA from a 10 VDC ref-
erence supply.

The basic problems which are inherent in bipolar designs are
not present in this CMOS product. CMOS devices have
nearly infinite current gain, therefore there are no β or α er-
rors in the design. Also, there is no analogous term to offset
voltage in these products, rather, an ON CMOS switch is
nothing more than a small resistor which can be controlled
by device geometry. To avoid the temperature coefficient and
piezoresistive problems of diffused resistors, silicon chro-
nium thin-film resistors are used.

These resistors track within 1 ppm/°C, which insures excel-
leus temperature tracking characteristics. Also, the feedback
resistor, which is needed with an external op amp, is pro-
vided on the chip, which insures a low temperature coeffi-
cient of the gain or full-scale reading of the DAC.

Bipolar designs in the 10-bit region can have a power dissi-
pation of 300 mW. Unless extreme care is taken to insure an
almost perfect thermal die layout, it is very possible to have
a 1°C temperature gradient on the die. If a diffused resistor
ladder were to be used in the presence of this gradient, it will
cause a 0.15% error. This means that all of the allowable er-
ror in a 10-bit DAC will be used up due to this thermal gradi-
ent. From this, it is obvious that the CMOS DAC, with its
combination of a low temperature coefficient thin-film resistor
ladder and an on-chip power dissipation of 30 mW max, will
overcome one of the major problems in bipolar designs.

DATA FORMATS AND DATA BUFFERS

From the digital viewpoint, a DAC seems little more than a
write only memory where the information in the memory is
made available as the analog output voltage. Problems arise
concerning data formatting. Is the data to be left-justified
(fractional binary) or right-justified (positionally weighted bi-
nary)? Also, updating a 10-bit DAC from an 8-bit bus can
cause transient output voltage errors until the complete new
word has been transferred.

The data format options are shown in Figure 1. Early con-
verter manufacturers favored fractional binary, and this has
caused the MSB to be labeled as “Bit 1” on DAC products.
As may be expected, this convention has been changed in
the new converter products to match the notation of the bits
on the data bus of µPs. People supplying converter products
still favor the fractional binary format, but it appears that the
user groups are approximately split on the question of which
to use.

Both of these problems go away with the addition of flexible
input digital data buffers (latches) which allow complete ap-
plications flexibility (Figure 2). For example, with two levels
of input buffers (double buffering), the DAC Register has the
job of holding the current digital data which is being con-
verted, and the other, the Input Latch, is then available to ac-
quire new digital data which will eventually be used to update
the DAC. This allows 10 bits to be assembled with two data
bytes from the µP and prevents the transient output error at
updating time. Further, even with 16-bit µPs, double buffer-
ing is necessary to allow many DACs to be updated simulta-
nenously. This is useful to establish the proper conditions for
a next test, or to allow new system parameters to be set up at
the same time.

Data formatting is handled by providing flexibility in the way
the digital data is entered into the Input Latch. To allow op-
eration with either an 8-bit (two write cycles) or a 16-bit (one

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^0</td>
<td>1/128</td>
</tr>
<tr>
<td>2^1</td>
<td>1/64</td>
</tr>
<tr>
<td>2^2</td>
<td>1/32</td>
</tr>
<tr>
<td>2^3</td>
<td>1/16</td>
</tr>
<tr>
<td>2^4</td>
<td>1/8</td>
</tr>
<tr>
<td>2^5</td>
<td>1/4</td>
</tr>
<tr>
<td>2^6</td>
<td>1/2</td>
</tr>
</tbody>
</table>

V_OUT = (fractional binary number) * V_REF

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>2^9</td>
<td>2^8</td>
</tr>
<tr>
<td>2^10</td>
<td>2^9</td>
</tr>
</tbody>
</table>

V_OUT = (positionally weighted binary number) * V_LSB
where V_LSB = V_REF / 1024

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^0</td>
<td>1</td>
</tr>
<tr>
<td>2^1</td>
<td>2</td>
</tr>
<tr>
<td>2^2</td>
<td>4</td>
</tr>
<tr>
<td>2^3</td>
<td>8</td>
</tr>
<tr>
<td>2^4</td>
<td>16</td>
</tr>
<tr>
<td>2^5</td>
<td>32</td>
</tr>
<tr>
<td>2^6</td>
<td>64</td>
</tr>
<tr>
<td>2^7</td>
<td>128</td>
</tr>
</tbody>
</table>

V_OUT = (positionally weighted binary number) * V_LSB
where V_LSB = V_REF / 1024

FIGURE 1. Data Formats for a 10-Bit Converter

The New MICRO-DAC™ and BI-FET™ are trademarks of National Semiconductor Corp.
write cycle) data bus, all 10 locations of the Input Latch are enabled on the first write cycle from the µP. Then, depending on the data format, the next write cycle, if used, will overwrite two of these locations with the proper data.

Two product options are offered, as shown in the matrix of Figure 3. Each of the 2 functional options is offered in accuracies of 8, 9 or 10 bits. The 20 pin 0.3” wide packages are used for fixed left-justified data format. The 24 pin part is pin programmable for either right- or left-justified data.

All of these options make use of the standard µP control signals, such as CS and WR, and the data on the bus can be read by the converter in a standard write cycle. As expected, the internal CMOS logic is faster for higher supply voltages, and this effect on the write strobe width is shown in Figure 4.

The internal transfer of the digital data from the Input Latch to the DAC Register can be controlled in three ways: 1) automatic transfer when the second byte occurs, 2) use the µP to control the transfer—that signal can update several DACs, if desired, or 3) use an external strobe to cause the transfer.

![Diagram of Double-Buffering the Digital Input Data](AN008717-1)

FIGURE 2. Double-Buffering the Digital Input Data
MEETING T’L INPUT VOLTAGE SPECS WITH CMOS

Logic compatibility is aided by having the CMOS logic inputs meet T’L voltage level specs. A special biasing circuit makes use of the parasitic NPN bipolar transistors which are available on the CMOS chip (Figure 5). These bipolar devices will supply base-emitter voltage, V_{BE}, references for the digital inputs. By using this circuit, these CMOS MICRO-DAC products have the same input voltage threshold, 2 V_{BE}, as exists with standard T’L.

The details of this bias referencing circuit are shown in Figure 6. Notice that the reference N-channel transistor, Q1, is tied in a feedback loop, which forces it to conduct the 60 µA which is supplied to its drain. The gate voltage of the transistor thus biases at V_{IN}, the voltage which is necessary for Q1 to conduct the 60 µA. The three NPN transistors add 3 V_{BE} to this voltage. The output emitter-follower, Q2, causes a loss of 1 V_{BE} and produces a voltage reference of 2 V_{BE} + V_{N} to be used by all of the logic input circuits. One of these input stages, Q3, is also shown on this figure. Note that the digital input is applied to the source of Q3. This transistor has the same geometry as Q1, and also has a 60 µA current source feeding its drain. Due to device matching, Q3 will therefore conduct when the logic input voltage is equal to 2 V_{BE}, and this is the logic threshold voltage of standard T’L logic gates. The variation of this logic threshold with supply voltage and temperature is shown in Figure 7. This input circuitry may surprise a new user because here is a CMOS part which outputs 60 µA of current at the digital input leads when pulled to the low voltage state!

ON THE ANALOG SIDE

Conceptually, it is easiest to think of DACs which use binary weighted resistors. Unfortunately, the large resistance ratios which result have limited this design approach to 4-bit converters where the ratio is 16 to 1.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Accuracy (Bits)</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC1000</td>
<td>10</td>
<td>24</td>
<td>Has All Logic Features</td>
</tr>
<tr>
<td>DAC1001</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC1002</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC1006</td>
<td>10</td>
<td>20</td>
<td>For Left-Justified Data</td>
</tr>
<tr>
<td>DAC1007</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC1008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 3. MICRO-DAC Product Options

FIGURE 4. Write Strobe as a Function of the V_{CC} Supply Voltage and Temperature

FIGURE 5. A Simplified Wafer Cross Section Showing the CMOS FETs and the NPN Bipolar Transistor
The R-2R resistor ladder is an old trick to keep the resistors always in a 2:1 ratio, independent of the resolution of the converter. Three variations on the use of these ladders exist which depend on whether voltages or currents are being switched, and whether the output from the ladder is a current or a voltage. The current-switching, current-mode, R-2R ladder is used in the MICRO-DAC products and is shown in Figure 8. This is the heart of the analog section of the DAC and, as can be seen, it consists of all passive components. This inherent simplicity is the strong point of this design approach. The main DAC design problem is to provide a relatively straightforward function—but to do it with a very high accuracy!

Proper operation of the ladder requires that all of the 2R legs always go to exactly 0 V DC (ground). Therefore, offset voltage, \(V_{OS} \), of the external op amp cannot be tolerated, as every millivolt of \(V_{OS} \) will introduce 0.01% of added linearity error. At first this seems unusually sensitive, until it becomes clear that 1 mV is 0.01% of the 10V reference!

High resolution converters of high accuracy require attention to every detail in an application to achieve the available performance which is inherent in the part.

Also note that no “DC balancing” resistance should be used in the grounded positive input lead of the op amp, Figure 9. This resistance and the input current of the op amp can also create errors. The low input biasing current of the BI-FET™ op amps makes these ideal for use in DAC current-to-voltage applications. The \(V_{OS} \) of the op amp should be adjusted with a digital input of all zeros to force \(I_{OUT1} = 0 \) mA. A 1 kΩ resistor can be temporarily connected from the inverting input to ground (Figure 9) to provide a DC gain of approximately 15 to the \(V_{OS} \) of the op amp and make the zeroing easier to sense. Note also that the feedback resistor for the op amp is provided on the chip and should always be used. This guarantees both a good initial matching and this resistor will match the R-2R ladder over temperature changes.
The internal details of the SPDT current-mode switches are shown in Figure 10. The N-channel transistors are driven by the VCC supply voltage which is used for the part. Operation at 15 V DC reduces the switch ON resistance as compared to the use of a 5 V DC supply and, therefore, improves the performance of the DAC. The change in gain and linearity errors as a function of the supply voltage are shown in Figure 11. These curves are normalized to the performance with a 15 VDC power supply and show the degradation as the supply voltage is reduced.

The usefulness of a DAC can be determined by noting the linearity errors which result as the magnitude of the reference voltage is reduced. This is important for multiplication applications and other uses which require small values of reference voltage. In the case of the MICRO-DAC converters, reducing the reference voltage from 10 V to 1 V results in a linearity error change of approximately 0.005%.

END POINT GUARANTEE VS BEST-StraIGHT-LINE
Suppliers of DACs like to use a Best-Fit Straight-Line linearity guarantee to increase yields. Unfortunately, this technique is based upon iterating the zero and the full-scale adjustments to optimally split the errors to be equidistant from a straight line. To the user, this means that each DAC has to go through a rather sophisticated adjustment procedure to home in on this best approximation—which is different for each part.

The alternative specification is called an End Point Spec. This means that after a standard zeroing of the VOS of the op amp (the DAC itself doesn’t require a zero adjustment, so a pre-trimmed low VOS op amp can eliminate this adjustment) and a standard full-scale adjustment, the linearity of each of the 1024 steps is within spec! This is a large benefit to the DAC user.
The differences between these specification techniques are shown in Figure 12. A DAC with an error of 1 LSB and failing the end point test is shown in Figure 12. Notice that by readjusting the full-scale, the error of this DAC can be optimally split to be symmetrically located about a Best-Fit Straight-Line. This search for the optimum end point readjustments has to be done by the user for each individual DAC. The end point spec allows standard zero and full-scale adjustment procedures to be used in PC board assembly, and no time-consuming searching or special readjusting techniques need to be used. Further, it can be seen that the end point spec is a more stringent requirement on the linearity of the DAC.

SUMMARY

The CMOS current-switching DACs have evolved from the unbuffered MDACs to the µP compatible double-buffered MICRO-DAC products. Many non-DAC applications have been generated for the MDACs and we now have the new possibility of µP controlled gain, attenuators and multipliers—all of which easily interface to a µP system. These new low cost monolithic DACs will open up many new applications in the modern electronic systems.
FIGURE 12. Best-Straight-Line vs End Points Specs
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for meeting such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>www.ti.com/audio</th>
<th>Applications</th>
<th>www.ti.com/communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>amplifiers.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>dataconverter.ti.com</td>
<td>Computers and Peripherals</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>dsp.ti.com</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>DSP</td>
<td>www.ti.com/clocks</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Interface</td>
<td>logic.ti.com</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Logic</td>
<td>power.ti.com</td>
<td>Transportation and Automotive</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>microcontroller.ti.com</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.ti-rfid.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti.com/omap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated