ADC121S021, DAC081S101, LM4140, LM7301, LMP7711

Improving Machinery Vibration Analysis

Literature Number: SNAA122
Machinery Monitoring
—— By Walter Bacharowski, Applications Engineer

Machinery downtime during normal shift operations is very costly due to lost production, but it is also avoidable. Preventative maintenance systems are being used to improve the operating efficiency of machinery used in factories, power plants, mining, and many other operations. Diagnostic electronics, used in newer preventative maintenance programs, monitor the operating parameters of the machine. For example, a roller mill may have several large electric motors and rollers, all of which have bearings, a hydraulic pump, and a variety of hydraulic actuators. A preventative maintenance system for this type of equipment could include electronic monitoring equipment to measure bearing vibration and temperature, hydraulic fluid pressure and temperature, and motor temperature.

Vibration analysis, which is the measurement of vibrations generated by moving parts in the frequency range of 50 Hz to 10 kHz, can be used to monitor the condition of bearings and other moving components. Ultrasonic analysis, an extension of vibration analysis, uses higher frequencies in the 15 kHz to 40 kHz range. Changes are detected through spectral analysis of the generated frequencies in the moving components due to wear or damage. As parts wear, the magnitude of the vibrations and ultrasonic noise will increase. An increase of about 12 dB indicates possible impending failure.

Figure 1. Vibration Analysis Signal Chain

GPS Application

Precision Amplifiers

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Key Features</th>
<th>Typ Supply Current (mA)</th>
<th>Supply Voltage Range (V)</th>
<th>Max Input Offset Voltage (mV)</th>
<th>Unity Gain Bandwidth (MHz)</th>
<th>Low Input Current CMOS Design</th>
<th>Temp Range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP7712</td>
<td>Precision, low-noise RRO dual CMOS</td>
<td>1.15</td>
<td>1.8 to 5.5</td>
<td>0.15</td>
<td>17</td>
<td></td>
<td>-40 to +125</td>
</tr>
<tr>
<td>LMP7702</td>
<td>Precision, 12V RRO dual CMOS</td>
<td>0.73</td>
<td>2.7 to 12</td>
<td>0.2</td>
<td>2.5</td>
<td></td>
<td>-40 to +125</td>
</tr>
<tr>
<td>LMP2012</td>
<td>90% power saving RRO performance amp</td>
<td>1.2</td>
<td>2.7 to 5.25</td>
<td>0.025</td>
<td>3</td>
<td></td>
<td>-40 to +125</td>
</tr>
</tbody>
</table>

Serial Peripheral Interface (SPI) ADCs for 8-Channel Applications

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Res</th>
<th># of Inputs</th>
<th>Pin/Function Compatible</th>
<th>Throughput Rate (kSPS)</th>
<th>Input Type</th>
<th>Max Power 5V/3V (mW)</th>
<th>Supply (V)</th>
<th>Max INL (LBS)</th>
<th>Min SINAD (dB)</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC78H90</td>
<td>12</td>
<td>8</td>
<td></td>
<td>500</td>
<td>Single ended</td>
<td>12/8.3</td>
<td>2.7 to 5.25</td>
<td>±1.0</td>
<td>70</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>ADC128S102</td>
<td>12</td>
<td>8</td>
<td></td>
<td>500 to 1000</td>
<td>Single ended</td>
<td>15.5/4.5</td>
<td>2.7 to 5.25</td>
<td>±1.2</td>
<td>70</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>ADC128S052</td>
<td>12</td>
<td>8</td>
<td></td>
<td>200 to 500</td>
<td>Single ended</td>
<td>13/3.6</td>
<td>2.7 to 5.25</td>
<td>±1.0</td>
<td>70</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>ADC128S022</td>
<td>12</td>
<td>8</td>
<td></td>
<td>50 to 200</td>
<td>Single ended</td>
<td>11.5/3.3</td>
<td>2.7 to 5.25</td>
<td>±1.0</td>
<td>70</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>ADC108S102</td>
<td>10</td>
<td>8</td>
<td></td>
<td>500 to 1000</td>
<td>Single ended</td>
<td>13.6/4.2</td>
<td>2.7 to 5.25</td>
<td>±0.5</td>
<td>61.3</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>ADC108S052</td>
<td>10</td>
<td>8</td>
<td></td>
<td>200 to 500</td>
<td>Single ended</td>
<td>12.1/3.3</td>
<td>2.7 to 5.25</td>
<td>±0.4</td>
<td>61.3</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>ADC108S022</td>
<td>10</td>
<td>8</td>
<td></td>
<td>50 to 200</td>
<td>Single ended</td>
<td>10.5/2.8</td>
<td>2.7 to 5.25</td>
<td>±0.3</td>
<td>61.3</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>ADC088S102</td>
<td>8</td>
<td>8</td>
<td></td>
<td>500 to 1000</td>
<td>Single ended</td>
<td>11/3.6</td>
<td>2.7 to 5.25</td>
<td>±0.2</td>
<td>49.2</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>ADC088S052</td>
<td>8</td>
<td>8</td>
<td></td>
<td>200 to 500</td>
<td>Single ended</td>
<td>8.5/3</td>
<td>2.7 to 5.25</td>
<td>±0.2</td>
<td>49.2</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>ADC088S022</td>
<td>8</td>
<td>8</td>
<td></td>
<td>50 to 200</td>
<td>Single ended</td>
<td>7.8/2.2</td>
<td>2.7 to 5.25</td>
<td>±0.2</td>
<td>49.2</td>
<td>TSSOP-16</td>
</tr>
</tbody>
</table>
Machinery Monitoring

This type of monitoring allows repairs to be made before the component fails. In many cases, vibration analysis and ultrasonic analysis require two different pieces of equipment. A single, cost-effective instrument that can monitor the complete frequency range would be useful. A schematic diagram of a vibration and ultrasonic analysis signal chain is shown in Figure 1.

The piezoelectric sensor senses the vibrations and ultrasonic noise generated by the bearings. The piezoelectric element is buffered internally by a MOSFET, which is driven by a constant current source, amplifier A5, and is internally AC coupled to the filter. Amplifiers A1, A2, and A3 implement a gain of 41.9 dB in conjunction with a 6-pole low-pass filter. Amplifier A4 has a gain of 1 with a 2-pole filter. The ADC121S021 Analog-to-Digital Converter (ADC), which operates at a 200 kHz sampling rate, digitizes the amplified and filtered signal. The microprocessor’s software performs a FFT (Fast Fourier Transform) on the data to obtain the frequency and magnitude information. The pass band of the circuitry shown is about 40 kHz. A typical wide band vibration sensor has a transfer function in the form of Figure 2.

The low frequency will start to roll off around 30 Hz and will be relatively flat until a resonance frequency occurs at 65 kHz, after which the response falls rapidly. The peak-to-peak amplitude in the flat band is about 32 mVp-P and will be amplified to 4 Vp-P. The gain will be:

\[
\frac{4.096 \text{V}}{0.032} = 128
\]

A gain of 125 will be used to provide some margin.

In relation to the maximum signal frequency of interest, 40 kHz in this case, the sampling rate is a concern. To avoid aliasing frequencies higher than the Nyquist rate, \(\frac{1}{6}\) the sampling frequency must be filtered and reduced in amplitude to less than 1 LSB of the ADC. In this example, a 12-bit ADC is being used with a 4.096V reference, which results in a resolution of 1 mV as follows:

\[
\frac{4.096 \text{V}}{4096} = 0.001 \text{V}
\]

To have a realizable filter in sampled data systems, there must be some separation between the highest frequency to be measured and the Nyquist frequency of the ADC. The result is over sampling the signal, but the filter can reduce or eliminate aliasing. Figure 1 uses the ADC121S021, which is a 12-bit, 200k Samples Per Second (kSPS) ADC. When this ADC is converting at 200 kSPS, the Nyquist frequency will be 100 kHz. The output signal of the sensor is about 8 mVp-P at 100 kHz and the gain required to reduce this signal to less than 1 mVp-P is:

\[
20 \log \left(\frac{0.001 \text{V}}{0.008 \text{V}} \right) = -18 \text{ dB}
\]

The difference between the 100 kHz and the 40 kHz signal is:

\[
\log(100 \text{kHz}) - \log(40 \text{kHz}) = 5 - 4.60 = 0.40 \text{ decade}
\]

At 40 kHz, the gain is:

\[
20 \log \left(\frac{125 \sqrt{V}}{V} \right) = 41.9 \text{ dB}
\]

The required filter roll off is:

\[
\frac{-41.9 \text{ dB} + (-18 \text{ dB})}{0.4 \text{ decade}} = -149.8 \text{ dB/decade}
\]

Or at least an 8-pole filter:

\[
\frac{-149.8 \text{ dB/decade}}{20 \text{ dB/decade/pole}} = 7.5 \text{ poles}
\]

An amplifier can easily implement a 2-pole filter with four amplifiers having a pass band gain of five and another amplifier with a pass band gain of one.
Ultrasonic Receiver and Spectral Analyzer

LMP7711 Features
- Offset voltage, V_{OS}, less than 150 µV for better initial accuracy
- Maximum TCV_{OS} of 4 µV/°C ensures accuracy from -40°C to 125°C
- Low 1/f noise at 6.8 nV/√Hz at 1 kHz
- Ultra-low input bias current, 100 fA, for high impedance sensor interfacing

LMP7701 Features
- Offset voltage, V_{OS}, less than 300 µV for better initial accuracy
- Guaranteed 2.7V to 12V operation over -40°C to 125°C
- Ultra-low input bias current, 200 fA, for high impedance sensor interfacing
- High PSRR (110 dB) ensures higher accuracy with noisy supplies
- High CMRR (110 dB) ensures high accuracy over a wide input range

Precision Op Amps

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Key Features</th>
<th>Typ Supply Current (mA)</th>
<th>Supply Voltage Range (V)</th>
<th>Max Input Offset Voltage (mV)</th>
<th>Unity Gain Bandwidth (MHz)</th>
<th>Low Input Current CMOS Design</th>
<th>Temp Range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP7711</td>
<td>Precision, low-noise RRO CMOS</td>
<td>1.15</td>
<td>1.8 to 5.5</td>
<td>0.15</td>
<td>17</td>
<td>✓</td>
<td>-40 to +125</td>
</tr>
<tr>
<td>LMP7701</td>
<td>Precision, 12V RRO CMOS</td>
<td>0.73</td>
<td>2.7 to 12</td>
<td>0.2</td>
<td>2.5</td>
<td>✓</td>
<td>-40 to +125</td>
</tr>
<tr>
<td>LMV651</td>
<td>90% Power saving RRO performance amp</td>
<td>0.11</td>
<td>2.7 to 5.5</td>
<td>1.0</td>
<td>12</td>
<td>—</td>
<td>-40 to +125</td>
</tr>
<tr>
<td>LMV791</td>
<td>Low-noise, low I_{BIAS} RRO</td>
<td>0.95</td>
<td>1.8 to 5.5</td>
<td>1.3</td>
<td>14</td>
<td>✓</td>
<td>-40 to +125</td>
</tr>
<tr>
<td>LPV511</td>
<td>880 nA, Ultra-low power 12V RRO</td>
<td>880 nA</td>
<td>2.7 to 12</td>
<td>3.0</td>
<td>0.027</td>
<td>—</td>
<td>-40 to +85</td>
</tr>
</tbody>
</table>
Distance and Speed Measurement Application

Serial Peripheral Interface (SPI) ADCs and DACs for Single-Channel Applications
- Guaranteed performance over sample rates
- Excellent static and dynamic performance
- Miniature packages reduce board space
- Pin- and function-compatible family
- Extremely low power
- Reference from supply

ADCs for Single-Channel Applications

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Res</th>
<th># of Inputs</th>
<th>Pin/Function Compatible</th>
<th>Throughput Rate (kSPS)</th>
<th>Input Type</th>
<th>Max Power 5V/3V (mW)</th>
<th>Supply (V)</th>
<th>Max INL (LBS)</th>
<th>Min SINAD (dB)</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC121S101</td>
<td>12</td>
<td>1</td>
<td></td>
<td>500 to 1000</td>
<td>Single ended</td>
<td>16/4.5</td>
<td>2.7 to 5.25</td>
<td>±1.1</td>
<td>70</td>
<td>SOT23-6, LLP-6</td>
</tr>
<tr>
<td>ADC121S051</td>
<td>12</td>
<td>1</td>
<td></td>
<td>200 to 500</td>
<td>Single ended</td>
<td>15/8/4.7</td>
<td>2.7 to 5.25</td>
<td>±1.0</td>
<td>70.3</td>
<td>SOT23-6, LLP-6</td>
</tr>
<tr>
<td>ADC121S021</td>
<td>12</td>
<td>1</td>
<td></td>
<td>50 to 200</td>
<td>Single ended</td>
<td>14/7/4.3</td>
<td>2.7 to 5.25</td>
<td>±1.0</td>
<td>70</td>
<td>SOT23-6, LLP-6</td>
</tr>
<tr>
<td>ADC101S101</td>
<td>10</td>
<td>1</td>
<td></td>
<td>500 to 1000</td>
<td>Single ended</td>
<td>16/4.5</td>
<td>2.7 to 5.25</td>
<td>±0.7</td>
<td>61</td>
<td>SOT23-6</td>
</tr>
<tr>
<td>ADC101S051</td>
<td>10</td>
<td>1</td>
<td></td>
<td>200 to 500</td>
<td>Single ended</td>
<td>13/7/4.3</td>
<td>2.7 to 5.25</td>
<td>±0.7</td>
<td>60.8</td>
<td>SOT23-6</td>
</tr>
<tr>
<td>ADC101S021</td>
<td>10</td>
<td>1</td>
<td></td>
<td>50 to 200</td>
<td>Single ended</td>
<td>12/6/4</td>
<td>2.7 to 5.25</td>
<td>±0.6</td>
<td>60.7</td>
<td>SOT23-6</td>
</tr>
<tr>
<td>ADC081S101</td>
<td>8</td>
<td>1</td>
<td></td>
<td>500 to 1000</td>
<td>Single ended</td>
<td>16/4.5</td>
<td>2.7 to 5.25</td>
<td>±0.3</td>
<td>49</td>
<td>SOT23-6</td>
</tr>
<tr>
<td>ADC081S051</td>
<td>8</td>
<td>1</td>
<td></td>
<td>200 to 500</td>
<td>Single ended</td>
<td>12/6/3.6</td>
<td>2.7 to 5.25</td>
<td>±0.3</td>
<td>49</td>
<td>SOT23-6</td>
</tr>
<tr>
<td>ADC081S021</td>
<td>8</td>
<td>1</td>
<td></td>
<td>50 to 200</td>
<td>Single ended</td>
<td>11/6/3.24</td>
<td>2.7 to 5.25</td>
<td>±0.3</td>
<td>49</td>
<td>SOT23-6</td>
</tr>
<tr>
<td>ADC121S625*</td>
<td>12</td>
<td>1</td>
<td></td>
<td>50 to 200</td>
<td>Differential</td>
<td>2.8</td>
<td>4.5 to 5.5</td>
<td>±1.0</td>
<td>68.5</td>
<td>MSOP-8</td>
</tr>
</tbody>
</table>

*Uses external reference

DACs for Single-Channel Applications

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Res</th>
<th># of Inputs</th>
<th>Pin/Function Compatible</th>
<th>Settling Time (µs)</th>
<th>Input Type</th>
<th>Max Power 5V/3V (mW)*</th>
<th>Supply (V)</th>
<th>Max INL (LBS)</th>
<th>Max DNL (LBS)</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC121S101</td>
<td>12</td>
<td>1</td>
<td></td>
<td>10</td>
<td>Single ended</td>
<td>1.5/0.7</td>
<td>2.7 to 5.5</td>
<td>±0.8</td>
<td>-1.0/-0.7</td>
<td>SOT23-6, MSOP-8</td>
</tr>
<tr>
<td>DAC101S101</td>
<td>10</td>
<td>1</td>
<td></td>
<td>7.5</td>
<td>Single ended</td>
<td>1.6/0.7</td>
<td>2.7 to 5.5</td>
<td>±0.2</td>
<td>-0.35/-0.2</td>
<td>SOT23-6, MSOP-8</td>
</tr>
<tr>
<td>DAC081S101</td>
<td>8</td>
<td>1</td>
<td></td>
<td>5</td>
<td>Single ended</td>
<td>1.6/0.7</td>
<td>2.7 to 5.5</td>
<td>±0.75</td>
<td>±0.1</td>
<td>SOT23-6, MSOP-8</td>
</tr>
</tbody>
</table>

*FSCLK = 20 MHz
The filter’s pass band characteristic is a result of the amplifier’s gain bandwidth and the placement of the poles in the amplifier’s feedback. Each filter stage can be considered as a non-inverting gain stage of 5V/V with two poles. The gain bandwidth of the amplifier required to keep the amplitude error less than 1 LSB at 40 kHz can be calculated as follows:

\[
\frac{40 \text{ kHz} \times 5}{0.0156} = 12820 \text{ kHz} = 12.8 \text{ MHz}
\]

The denominator, 0.0156, in the previous calculation is the effective bandwidth of an amplifier for 13-bit accuracy given its -3 dB point. The LMP7711 precision amplifier, with 17 MHz gain bandwidth and a typical offset voltage of 20 µV, is a good choice for this type of application. The output of amplifier A3 is isolated from the switched capacitor input of the ADC by the 180Ω resistor and the 470 pF capacitor which adds an additional pole to the anti-alias filter. Figure 3 shows the estimated response of the low-pass filter.

The ADC121S021 is a single-ended input, 12-bit, 200 kSPS converter with a Serial Peripheral Interface (SPI). An LM4140ACM-4.1 precision voltage reference is the ADC’s reference and biases the filter amplifiers to half of the ADC’s input range. The sensor’s output is an AC signal, and the mid-scale offset level shifts the signal to the center of the ADC’s range. The LM4140 is also the reference voltage for the voltage controlled current source using the LM7301, amplifier A4, a general purpose 32V amplifier. Internal to the sensor, a MOSFET transistor buffers the piezoelectric sensor element. The current source drives the MOSFET, which is connected as a common source amplifier and is AC coupled to the output terminal.

Another aspect of machine monitoring is the measurement and analysis of hydraulic pressure transients in hydraulic control systems. For example, hydraulic hammer occurs when flow control valves have a fast shutoff and the fluid momentum causes a banging effect within the fluid system. Hydraulic hammer can damage and cause premature failure of hydraulic components and systems. These systems are designed to safely absorb the hydraulic energy. Figure 4 is a schematic of a hydraulic pressure monitoring system.
This signal chain can be used to monitor pressure fluctuations as well as to conduct spectral analysis of the pressure fluctuations. As in Figure 1, the frequency response of the sensor and amplifier must eliminate frequency components above the Nyquist frequency. In this case, the frequency response of the pressure sensor and the hydraulic system naturally band limit the pressure signals to about 3 kHz to 4 kHz. This reduces the filter requirements of the amplifier circuits. This amplifier, made up of A1 and A2, is the input stage of an instrumentation amplifier and provides a differential input and a differential output with a gain of 100V/V. The 200 pF capacitors provide a pole at 8 kHz for additional filtering. The amplifiers’ outputs are isolated from the switched capacitor inputs of the ADC by the 180Ω resistors and the 470 pF capacitors.

The pressure sensor in this example is a resistive bridge and the sensor’s output is a function of the change in resistance and the voltage driving it. The sensor used in Figure 3 has a sensitivity of 0.2 mV/V of bridge excitation voltage per PSI of pressure. The DAC081S101 is an 8-bit DAC and is used to change the voltage driving the bridge which has the effect of a gain control for the pressure measurement circuit. For example, if the DAC’s output is programmed to 4V, then the full-scale pressure is 25.6 PSI. With an output voltage of 1V, the full-scale pressure is 102 PSI.

In summary, the circuitry shown can be used to implement a cost-effective, dedicated machine monitoring system.

View over 50 on-demand design focused seminars at www.national.com/online-seminar
Design Tools

INTRODUCING...

The Analog by Design Show
Tune in to National’s Analog by Design Show, hosted by Bob Pease, for in-depth technical discussion and lab demonstrations including:

- How not to design a noise-amplifying preamplifier
- How to properly specify a low-noise op amp
- How to test whether an op amp model includes effects of noise
- New WEBENCH® Low-Pass Active Filter Evaluation Board
- Compare WEBENCH simulation results with bench-test results

WEBENCH Active Filter Designer speeds the creation of sophisticated filters for data acquisition and signal conditioning applications.

Check out the new episode at www.national.com/nationaltv

WaveVision 4.0 Evaluation Board
Test and evaluate A/D converters with National’s easy-to-use WaveVision 4.0 evaluation board. Each evaluation board comes complete with USB cable and support software.

Features and benefits:
- Plug-n-play ADC evaluation board
- USB interface to PC
- PC-based data capture
- Easy data capture and evaluation
- Highlighted harmonic and SFDR frequencies
- Easy waveform examination
- Produces and displays FFT plots
- Dynamic performance parameter readout with FFT
- Produces and displays histograms

Don't miss a single issue!
Subscribe now to receive email alerts when new issues of Signal Path Designer® are available:
signalpath.national.com/designer

Also, be sure to check out our Power Designer! View online today at: power.national.com/designer
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

|-------------------|------------------|-----------------------|--------------------------|-------------|----------------|----------------|-----------------|-----------------|----------------|----------------------|----------------|-----------------------------|

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated