Generating Precision Clocks for Time-Interleaved ADCs

Literature Number: SNAA124
Generating Precision Clocks for Time-Interleaved ADCs

— By James Catt, Applications Engineer

Many digitized test and measurement applications requiring both high resolution and high sampling speeds in excess of what can be delivered by a single Analog-to-Digital Converter (ADC) commonly use multiple ADCs whose sample clocks have staggered phases. Broadband communication systems can also benefit from this architecture. Figure 1 illustrates a time-interleaved ADC sampling architecture.

Mathematically, the concept is simple. Even though each ADC is clocked at the same speed, the evenly staggered clock phases result in an effective increase in sample rate. The effective sampling rate is the number of ADCs multiplied by the sample clock. Figure 2 illustrates the time domain relationship between the sample clocks, in this case a four ADC system.
World’s First Single-Chip Clock Conditioner with Jitter Performance as Low as 200 fs

National Integrates the PLL, VCO, and Distribution Circuitry to Deliver the Industry’s Smallest Solution

LMK03000C

LMK03000/01 and LMK02000 Features

- Fully integrated VCO option delivers unprecedented jitter performance, reducing board space and risk
- Can be configured as jitter cleaner or clock generator
- Available in three performance grades for clocking various high performance applications with diverse jitter requirements
- Footprint compatibility between performance grades
- Three LVDS and five LVPECL clock outputs with dedicated divider and delay blocks simplifies distribution architecture
- Wide clock output frequency range of 1 to 785 MHz
- Small form factor minimizes PCB space by 70%

Ideal for use in 2G/3G basestations, data converter clocking, networking, medical equipment, instrumentation, military, and aerospace applications

Performance Grade Table

<table>
<thead>
<tr>
<th>Performance</th>
<th>Jitter (RMS Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMK02000</td>
<td>200 fs</td>
</tr>
<tr>
<td>LMK03000C/LMK03001C</td>
<td>400 fs</td>
</tr>
<tr>
<td>LMK03000/LMK03001</td>
<td>800 fs</td>
</tr>
</tbody>
</table>

For FREE samples, datasheets, and more information on the LMK03000/01 and LMK02000, visit

www.national.com/see/timing
Generating Precision Clocks for Time-Interleaved ADCs

In Figure 1 the input to each ADC channel is sampled at the rate of Fs (= 1/Ts) samples per second (SPS). Each ADC sample clock is offset relative to the other sample clocks by a fraction of the clock period Ts. If M is the total number of ADCs, then the fractional phase offset is (in units of one clock period):

\[\phi_m = \frac{m \cdot T_s}{M}, \quad m = 0, 1, \ldots, M-1 \]

The effective sample rate illustrated in Figure 2 is 4·Fs. However, the mathematical simplicity belies the complexity of implementing such a system. Hardware imperfections can destroy the performance of the system. In addition to noise and non-linearities that plague all hardware designs, the performance of time-interleaved ADC designs can be degraded by differences in DC offset, gain, and clock skew between the ADCs. Figure 3 illustrates how these differences are modeled.

All of these imperfections in the ADC channels must be addressed during the system design phase. There is a significant amount of literature that discusses different approaches to compensation and correction schemes for time-interleaved ADC architectures. This article will address the impacts of sample clock time skew and its relation to the topic of precision timing devices.

To gain a better understanding of the impact of the clock skew between ADC channels, a 4-channel time-interleaved system will be analyzed. The time-domain representation of the sampling process is shown in Figure 4. The ideal sampling times are indicated by the arrows. The actual sampling times (with skew) are shown as the vertical dotted lines slightly offset from the ideal sampling points. The resulting amplitude errors are replotted on the time axis at the bottom (magnified). In a periodic signal the sampling error due to the clock skew is periodic as well.

The model in Figure 3 shows a gain offset parameter \(a_m \) for the m-th channel and a DC offset, \(d_m \). The \(\Delta t_m \) parameter applied to the sampling switch instant represents a fixed but arbitrary time skew relative to the ideal sample instant. While the gain and DC offsets are intrinsic to the ADC circuitry, the time skews, \(\Delta t_m \), originate in the external clocks. The cause of the time-skew may be in the circuit used to create the phase offsets in the clocks, or it may be the result of path length differences in the clock lines. In future articles, these causes will be more fully examined.

Figure 5 shows another plot of an error signal in a sampled sinusoid due to time skew between clocks. The periodicity of the error signal is clearly seen. Note that the error reaches a maximum at points in the signal where the slope is the steepest.
High-Speed Amplifiers, GSPS Speed ADCs, and Clock Conditioners for Your Signal Path

- LMH® high-speed amps deliver the lowest power for a given bandwidth in the industry
- 8-bit ADCs with up to 3 GSPS deliver best-in-class performance at the lowest power consumption
- Programmable precision clock conditioners featuring jitter performance as low as 0.2 ps

<table>
<thead>
<tr>
<th>Amplifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product ID</td>
</tr>
<tr>
<td>LMH6703</td>
</tr>
<tr>
<td>LMH6704</td>
</tr>
<tr>
<td>LMH6574</td>
</tr>
<tr>
<td>LMH6550</td>
</tr>
<tr>
<td>LMH7220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clock Conditioners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product ID</td>
</tr>
<tr>
<td>LMK03000C</td>
</tr>
<tr>
<td>LMX2531</td>
</tr>
</tbody>
</table>

For FREE samples, datasheets, and more information, visit signalpath.national.com
The frequency domain plot is shown in Figure 6.

Some trigonometric manipulation yields:

\[s_m(n) = \cos\left(2\pi f_{\text{in}} \cdot \frac{n + r_m}{T_s}\right) + 2 \cdot \sin\left(2\pi f_{\text{in}} \cdot \frac{r_m}{T_s}\right) \sin\left(\frac{2\pi f_{\text{in}} \cdot (n + \frac{r_m}{2})}{T_s}\right), \]

where \(f_s \) = sample clock frequency.

The first term in the summation is the desired term, so the 2nd term represents the error due to skew. The amplitude component of this error term depends on \(f_{\text{in}} \) and \(r_m \), which should not be a surprise. As \(f_{\text{in}} \) increases, the slew rate increases and hence the voltage change over the skew interval increases, leading to increased error. Likewise, as \(r_m \) increases, the greater the chance that the signal magnitude will change significantly over the skew interval, also leading to a larger error term. We can see that as \(r_m \) goes to zero, the error term goes to zero. There is also an additional frequency component that is in quadrature to the desired component. As indicated in Figure 6, it can be shown that the spurs due to time skew in the multiplexed signal will correspond to \(\pm f_{\text{in}} \cdot k \cdot f_s / M \), meaning that they appear as sidebands centered at frequencies \(k \cdot f_s / M \), \(k = 0,1,\ldots, M-1 \).

In a more noise-like random signal, such as a signal with wideband digital modulation (for example: HDTV, digital cable, WCDMA), the sampling errors due to skew are randomized and so appear as additive random noise and raise the noise floor, decreasing SNR. It should also be clear that increasing skew leads to larger spurs in the periodic signal, and higher noise floor in the modulated signal.

SNR is often the figure of merit that is most indicative of system performance. Hence, the designer needs to be able to predict the degradation in system SNR for some given set of clock skew values. In most cases, however, clock skew can only be controlled to within some interval with some confidence level. In other words, the realized clock skew values and their allocation to different ADC clock inputs are random. Because SNR depends on the random time skew values, it is also a random variable. Therefore, the best we can do is to understand its distribution so that a confidence interval for SNR can be established for a particular distri-
Solutions for Wireless Infrastructure

See the full Wireless Infrastructure Design Guide at:
www.national.com/see/wirelessguide
bution of clock skew values. The key then is relating the statistics of clock skew to the confidence interval for SNR. Reference [1] addresses this question and derives a closed form of the Probability Density Function (PDF) for SNR that is generalized to any of the ADC channel mismatch parameters. This derivation assumes that the mismatches are Gaussian random variables.

While the closed form expression for the PDF provides good insight, it does not take into account the impact of clock skew in combination with quantization noise. One way to gain insight into these combined effects is to model them using a tool such as Matlab. For example, a 4-channel time-interleaved ADC system model was implemented and simulated in Matlab. The ADCs used in the model employed perfect quantizers so that the distortion contained in the output of the ADC was attributable only to the quantization operation and sample clock skew. Hence, the sensitivity of SNR to clock skew can be isolated from other distortion effects that may also be observed in a sampled signal in the real world. Once a model has been constructed and tested for validity, it can then be used to examine sensitivity relative to the standard deviation of the clock skew and number of time-interleaved ADCs. For example, Figure 7 shows the results of simulations for resolutions of 14 and 12 bits when the input signal is band-limited Additive White Gaussian Noise (AWGN). A Gaussian signal was used in this example because its statistics are similar to many wide-band digital signals. Because skew is a random variable with respect to each ADC clock input, the model allows us to run several thousand simulations in which each simulation run assigns random but fixed values of skew to each ADC clock, drawn from a zero mean Gaussian distribution with a chosen standard deviation (in UI). The SNR is calculated for each simulation run, and a histogram of SNR values is generated after completion of all the runs. Examples are plotted in Figure 7.

The key observation to be drawn from Figure 7 is that for a given Standard Deviation (SD) of the clock skew, in fractions of a unit interval (UI = one clock period), the SNR distribution will be dispersed. A secondary observation is that as expected, SNR degrades as the standard deviation of the clock skew increases. In the 14-bit case, we see that when clock skew reaches 0.8% UI, the SNR of the sample stream has seriously degraded. Because most designs must meet a minimum target SNR, the histogram data represented in the plots in Figure 7 enable the designer to begin evaluating design specifications for the clocking system driving the time-interleaved ADCs. The 90%, 95%, and 99% confidence intervals for SNR associated with a particular clock skew distribution can be estimated from the histogram data, allowing the designer to determine the suitability of a clocking design exhibiting such performance.

Summary
In this article, we have examined the impact of sample clock skew on time-interleaved ADC systems. National’s LMK03xxx family of Precision Clock Conditioners with integrated VCO features multiple clock outputs that are locked to a single reference. These outputs may be edge synchronized, or, alternatively, programmable delay may be assigned to each clock output. Because path length differences can impact skew between clocks, having an adjustable delay capability is an important tool when designing a clocking scheme for a time-interleaved ADC system.

WEBENCH® Signal Path Designer® Tools

Design, simulate, and optimize amplifier circuits in this FREE online design and prototyping environment allowing you to:
- Synthesize an anti-alias filter
- Select the best amplifier/ADC combo for your system specs
- Make trade-offs based on SNR, SFDR, supply voltage
- Simulate real-world operating conditions using SPICE
- Receive samples in 24 hours
webench.national.com

WEBENCH Wireless Online Design Environment

Use this tool to simulate and optimize Phase-Locked Loop (PLL) designs. Choose the appropriate PLL and VCO and construct a loop filter to meet your design specifications and provide a complete solution. Create single/dual/fractional-N and active and passive PLL designs. Conduct simulations and view waveforms of phase noise, lock time, Bode plot/filter analysis, and spur estimation.

Download National’s new Clock Conditioner Owner’s Manual
www.national.com/see/timing

Don't miss a single issue!

Subscribe now to receive email alerts when new issues of Signal Path Designer® are available:
signalpath.national.com/designer

Also, be sure to check out our Power Designer! View online today at:
power.national.com/designer

© National Semiconductor Corporation, 2007. National Semiconductor, µLL, Signal Path Designer, and WEBENCH are registered trademarks of National Semiconductor. All other brand or product names are trademarks or registered trademarks of their respective holders.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of unforeseen circumstances.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated