Measuring an RTD Sensor with the TDC1000 and TDC7200 for Ultrasonic Sensing

Bahram Mirshab

ABSTRACT

This application note describes the firmware procedure for measuring temperature via two RTD's using the TDC1000 and TDC7200. Temperature is monitored in heat meters and flow meters.

Contents

1 Objective .. 2
2 Background .. 2
3 TDC1000 Embedded RTD Interface Circuit .. 2
4 Temperature Measurement with Multiple RTDs .. 3
5 RTD1 Temperature Measurement .. 3
6 Software Solution .. 3

List of Figures

1 Temperature Sensor Interface ... 2
2 Timing Sequence for Temperature Measurements .. 3
3 Timing Sequence for RTD1 ... 3
4 Timing Sequence for RTD2 ... 5

List of Tables

1 RTD1 TDC Clock Counts .. 4
2 RTD1 Conversion Results ... 4
3 RTD2 TDC Clock Counts .. 6
4 RTD2 Conversion Results ... 6
1 Objective

The objective of this application note is to describe a firmware method for monitoring two RTD's for a heat meter application.

2 Background

Resistance Temperature Detectors (RTD), measure temperature by relating the resistance of the RTD element with temperature. Typically, an RTD consists of a length of fine coiled wire wrapped around a ceramic or glass core, placed inside a protective housing. The resistance of the element of the RTD is provided at various temperatures. The element acts as a temperature sensor because with the change of temperature, the material changes resistance in a predictable manner.

RTDs are characterized by a linear positive change in resistance with respect to temperature. They exhibit the most linear signal with respect to temperature of any electronic sensing device. Platinum is the most widely specified RTD element type due to its wide temperature range, accuracy, stability, as well as the degree of standardization among manufacturers. Nickel, copper, and nickel-iron alloys are also used.

RTDs are often characterized by their base resistance at 0°C. Typical base resistance values available for platinum thin-film RTDs include 100 Ω, 500 Ω and 1000 Ω. For other element types, typical base values include 120 Ω for nickel, and 1000 Ω and 2000 Ω for nickel-iron.

3 TDC1000 Embedded RTD Interface Circuit

TDC1000’s embedded interface block supports two external RTD sensors as shown in Figure 1.

The temperature sensor block supports PT1000 or PT500 sensors. The System requires a temperature-stable external reference resistor (R REF). If the RTD type is PT500, then RREF should be 500 Ω. In case a PT1000 sensor is used, the RREF should be 1000 Ω. The reference resistor needs to have a low temperature coefficient.

Figure 1. Temperature Sensor Interface

The temperature sensor block supports PT1000 or PT500 sensors. The System requires a temperature-stable external reference resistor (R REF). If the RTD type is PT500, then RREF should be 500 Ω. In case a PT1000 sensor is used, the RREF should be 1000 Ω. The reference resistor needs to have a low temperature coefficient.
4 Temperature Measurement with Multiple RTDs

The temperature sensor measurement can be performed without the need of an external ADC. The temperature sensor block operates by converting the resistance of a reference, RREF, and up to two RTDs into a series of START and STOP pulses. The interval between the pulses is proportional to the measured resistance, and therefore, the temperature. As shown in Figure 2, the TDC1000 performs three measurements per trigger event and generates the corresponding pulses on the START and STOP pins.

![Figure 2. Timing Sequence for Temperature Measurements](image)

5 RTD1 Temperature Measurement

In the temperature measurement mode only, short duration pulses can occur after the 2nd and 4th Stop pulses. These pulses can be detected by TDC7200 and result in invalid temperature measurement.

6 Software Solution

The solution to eliminate the effect of the short duration pulses is summarized as follows:

6.1 Solution for Measuring REF Resistor and RTD1

- Measure START to STOP1 for REF resistor value
- Measure START to STOP2, STOP3 (if it exists), and STOP4
- Discard START to STOP3 if too close in time to STOP2
- Subtract START to STOP2 from START to STOP4 for RTD1 value

![Figure 3. Timing Sequence for RTD1](image)
Table 1. RTD1 TDC Clock Counts

<table>
<thead>
<tr>
<th>Time 1</th>
<th>CLKcount1</th>
<th>Time2</th>
<th>CLKcount2</th>
<th>Time3</th>
<th>CLKcount3</th>
<th>Time 4</th>
<th>CLKcount4</th>
<th>Time 5</th>
<th>CLKcount5</th>
<th>Time 6</th>
<th>CAL1</th>
<th>CAL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example RTD1 calculation based on Data1</td>
<td>2320</td>
<td>1611</td>
<td>298</td>
<td>2768</td>
<td>807</td>
<td>2822</td>
<td>2210</td>
<td>4120</td>
<td>1581</td>
<td>5224</td>
<td>1127</td>
<td>2269</td>
</tr>
<tr>
<td>Example RTD1 calculation based on Data2</td>
<td>1544</td>
<td>1612</td>
<td>2342</td>
<td>2768</td>
<td>1543</td>
<td>4119</td>
<td>191</td>
<td>5224</td>
<td>1242</td>
<td>6485</td>
<td>1493</td>
<td>2268</td>
</tr>
</tbody>
</table>

Table 2. RTD1 Conversion Results

<table>
<thead>
<tr>
<th>calCount</th>
<th>normLSB</th>
<th>Start-Stop1 (ns)</th>
<th>Start-Stop2 (ns)</th>
<th>Start-Stop3 (ns)</th>
<th>Start-Stop4 (ns)</th>
<th>Start-Stop5 (ns)</th>
<th>stop2 to stop3 (ns)</th>
<th>stop2 to stop4 (ns)</th>
<th>RTD1 (°C)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2270</td>
<td>0.055066079</td>
<td>201486.3436</td>
<td>346083.315</td>
<td>352756.0573</td>
<td>515040.6938</td>
<td>653065.6938</td>
<td>6672.742291</td>
<td>168957.3789</td>
<td>50.05718539</td>
<td>Note: If (stop2 to stop3 (ns) < 20000), use (stop2 to stop4 (ns)). Else: use (stop2 to stop3 (ns)) in RTD1 calculation.</td>
</tr>
<tr>
<td>2269.666667</td>
<td>0.055074167</td>
<td>201456.0508</td>
<td>346000.0551</td>
<td>514949.5153</td>
<td>653016.6324</td>
<td>2.808782494</td>
<td>168949.4603</td>
<td>307016.5773</td>
<td>50.02509938</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2015, Texas Instruments Incorporated
6.2 **RTD2 Temperature Measurement**

This procedure deviates from the steps to measure RTD1 because the TDC7200 can only measure START to STOP for the first 5 STOP pulses (including short duration pulses).

6.2.1 **Solution for Measuring REF Resistor and RTD2**

- Use the blanking feature of the TDC7200 to skip measuring the first three STOP pulses. Use information from first START to STOP2 to set the appropriate amount of blanking. A STOP mask period of 400 us (program stop mask register to 0x0C80 for 8 MHz clock) is used in the EVM GUI software.
- Next measure START to STOP1, STOP2, STOP3 (if exists) and Stop 4
- Discard START to STOP3 if too close in time to STOP2
- Subtract START to STOP2 from START to STOP4 for RTD value

![Figure 4. Timing Sequence for RTD2](image-url)
Table 3. RTD2 TDC Clock Counts

<table>
<thead>
<tr>
<th>Time</th>
<th>CLKcount1</th>
<th>Time2</th>
<th>CLKcount2</th>
<th>Time3</th>
<th>CLKcount3</th>
<th>Time4</th>
<th>CLKcount4</th>
<th>Time5</th>
<th>CLKcount5</th>
<th>Time6</th>
<th>CAL1</th>
<th>CAL2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example RTD2 calculation based on one shot TOF Measurement Result</td>
<td>606</td>
<td>4120</td>
<td>1980</td>
<td>5224</td>
<td>219</td>
<td>5278</td>
<td>1585</td>
<td>6485</td>
<td>819</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4. RTD2 Conversion Results

<table>
<thead>
<tr>
<th>calCount</th>
<th>normLSB</th>
<th>Start-Stop1 (ns)</th>
<th>Start-Stop2 (ns)</th>
<th>Start_stop3 (ns)</th>
<th>Start_Stop4 (ns)</th>
<th>stop2 to stop3 (ns)</th>
<th>stop2 to stop4 (ns)</th>
<th>RTD1 (°C)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2269.77778</td>
<td>0.0550071471</td>
<td>514924.3318</td>
<td>653021.3127</td>
<td>659696.085</td>
<td>810613.2698</td>
<td>0</td>
<td>6674.772371</td>
<td>157591.9571</td>
<td>72.36831479 Note: If (stop2 to stop3 (ns) < 20000), use (stop2 to stop4 (ns)); Else: use (stop2 to stop3 (ns)) in RTD2 calculation.</td>
</tr>
</tbody>
</table>

Measuring an RTD Sensor with the TDC1000 and TDC7200 for Ultrasonic Sensing

Copyright © 2015, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated