Reliably Detect Faults In Circuit Breakers with Contactless Inductive Switches

Luke Lapointe, Sensor Products

Circuit breakers are commonly used to manage the flow of electricity within a home or office but their reliable functionality is often taken for granted. Circuit breakers rely on making a solid electrical contact between the AC mains and the rest of the circuitry with the ability the open the circuit in the case of a short circuit or power surge. While this is a very robust method towards managing the flow of electricity, there is no inherent indication when the electrical connection is solid or barely making contact. Over time, the mechanical portion of the circuit also wears down making it more likely to get stuck halfway or make a marginal contact representing a potential failure point in the system.

Through the use of contactless inductive switches, the state of the circuit breaker can be remotely monitored regardless if a solid electrical contact is being made or not. This TechNote covers the basics of implementing inductive switches in a side-by-side configuration that can be used to reliably detect the health of circuit breakers and give the user a warning to take action.

Desired Circuit Breaker States for Detection

Figure 1 shows an example of the normal engaged/disengaged states as well as the undesirable region in the middle where a typical circuit breaker would fail or improperly work.

![Figure 1. Circuit-breaker States](image)

By using a contactless switching technology such as the LDC0851 differential inductive switch, you can detect the position of the metal lever itself rather than requiring the electrical contact. Thus, if the switch wears down, gets stuck in the middle or creates a partial contact, the LDC0851 will still be able to detect this state and alert users to take action through a simple LED warning or message. Note that this contactless approach also means that the LDC0851 is not affected by any of the AC or DC currents that are flowing in the system.

Inductive Switch Implementation

A 3-state slider switch can be implemented with two LDC0851 devices as shown in Figure 2.

![Figure 2. Dual LDC0851 Configuration](image)

Since the latch of the circuit breaker is made of metal it can be reused as the target for the LDC0851 to sense its position. The orientation of the coils can be adjusted to align the desired angle of the circuit breaker to a predetermined LDC0851 output state.

Sensor Orientation for 3-State Switching

With the switch fully engaged, both reference coils (LREF #1 and LREF #2) are covered, causing the push/pull outputs of both LDC0851 devices to have a high output state. When the switch is fully disengaged, both sense coils (LSENSE #1 and LSENSE #2) are covered, causing both LDC0851 devices to have a low output state.
output state. When the switch is anywhere in the middle, representing an unintentional state, LREF #1 and LSENSE #2 are covered, causing one LDC0851 to have a high output and the other LDC0851 output to have a low output respectively. These states are represented with a simple yellow and red LED display, but a more sophisticated message display is possible. Figure 3 shows the functional operation.

Circuit Breaker State

<table>
<thead>
<tr>
<th>Circuit Breaker State</th>
<th>Output Pattern</th>
<th>Coil with most metal coverage/least inductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully disengaged (Tripped)</td>
<td>0</td>
<td>LSENSE #1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>LSENSE #2</td>
</tr>
<tr>
<td>Partially engaged (Fault)</td>
<td>1</td>
<td>LREF #1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>LSENSE #2</td>
</tr>
<tr>
<td>Fully engaged (Normal operation)</td>
<td>1</td>
<td>LREF #1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>LREF #2</td>
</tr>
</tbody>
</table>

Figure 3. LDC0851 Coil-target Orientation

Prototyping with the LDC0851

In order to test the concept, I 3-D printed a circuit breaker mockup and added copper tape to the lever to simulate a metal target; see Figure 4. I used two of the LDC0851EVMs configured as side-by-side coils with coil E from the LDCCOILEVM (1). Note that the inductor coils do not need to make electrical contact with the lever, so they are placed at a nominal 1mm distance from the lever. Additionally, the LDC0851 provides stable operation over temperature and is not affected by environmental contaminants. A video of this circuit breaker prototype can be found online (2).

Figure 4. Circuit Breaker Prototype with LDC0851

Alternative Device Recommendations

For applications that need high resolution output data, the previous generation of LDC devices (LDC1612, LDC1312, and LDC1101) can also be used to implement the slider functionality. The LDC1612 and LDC1312 devices are general purpose inductance-to-digital converters that offer multiple channels and enable linear position sensing with a single device. The LDC1101 is a single channel, high speed general purpose device that can sample up to 180 ksps.

(1) See blog [Prototype side-by-side coils in four easy steps](#) for guidance on quick prototyping for the LDC0851.

(2) [Circuit breaker video](#)

Table 1. Device Recommendations

<table>
<thead>
<tr>
<th>Device</th>
<th>Optimized Parameter</th>
<th>Performance Trade-Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDC0851</td>
<td>No registers to program, simple push/pull interface, lower power (for duty cycled applications)</td>
<td>Requires multiple devices to achieve more than 2 states</td>
</tr>
<tr>
<td>LDC1612, LDC1312</td>
<td>Multiple channels, higher resolution</td>
<td>Higher power consumption and requires microcontroller to program device and process data</td>
</tr>
<tr>
<td>LDC1101</td>
<td>Highest sample rate</td>
<td>Higher power consumption and requires microcontroller to program device and process data</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI') technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated