DS90C031, DS90C031B, DS90C031QML, DS90C032, DS90C032B, DS90C032QML, DS90LV031A, DS90LV032A

Application Note 1110 LVDS Quad Dynamic I CC vs Frequency

Literature Number: SNLA009
LVDS OPERATION

LVDS (Low Voltage Differential Signaling) is a high speed general purpose interface that can be used in a wide range of application areas. Due to its small signal swing, differential signaling and current mode driver outputs, noise is minimized and very low power consumption across frequency is obtained.

The driver outputs consist of a current source which drives the differential pair. The receiver has high impedance so that the majority of the current flows across the 100Ω termination resistor generating ~300 mV across the receiver inputs which have a threshold of less than 100 mV.

The transmission line (a cable or a controlled impedance printed circuit board) must be terminated and matched to its characteristic differential impedance to complete the current loop and terminate high speed signals. The accurate termination resistor, that is about 100Ω and matches the media, must be placed across the differential signal lines as close to the receiver inputs as possible. If the medium is not properly terminated, signals that reflect from the end of the cable or trace may interfere with succeeding signals. EMI emissions are also reduced with proper termination.

LVDS COMPARED TO OTHER TECHNOLOGIES

Since LVDS technology is not dependent on a specific power supply, like some PECL and ECL technologies at 5V, maintaining the same signal levels and performance with lower power supply voltages of 5V, 3.3V and even less than 2.5V is easy to accomplish.

LVDS has a simple termination scheme that is easy to implement in most applications; whereas, PECL and ECL can require more complex termination than the one resistor LVDS solution. PECL drivers commonly require 220Ω pull down resistors for each driver output along with 100Ω resistor across the receiver input.

As mentioned before, EMI effects are reduced as signaling swings are much smaller than traditional CMOS, TTL or PECL.

FOCUS ON DYNAMIC I CC VS FREQUENCY

This note will look at the presently offered LVDS quad receivers - the 5V DS90C032 and the 3.3V DS90LV032A - and the LVDS quad drivers - the 5V DS90C031 and the 3.3V DS90LV031A.

Receiver dynamic I CC was measured with all four inputs simultaneously switching and TTL outputs with load capacitance of 8 pF simulating the PCB board trace and gate inputs. Driver dynamic I CC was also measured with all four inputs simultaneously switching and LVDS outputs loaded with a 100Ω load and board capacitance of ~25 pF.

Both the receivers and drivers were driven by a Tektronix HFS 9009 Stimulus System. The receiver input signal level was 1.1V to 1.3V (for a VID of 200 mV) and the driver signal level was 0V to 3V.

A comparison of the Dynamic I CC of the two LVDS Quad Receivers is shown in Figure 1. The dynamic I CC includes both the quiescent and load current of 4 channels. At low frequency, the dynamic I CC of the two devices is stable at ~10 mA. It then rises to ~40 mA at 100 MHz and ~75 mA at 200 MHz. It can also be noted that the 5V device initially draws less current (~5 mA) than the 3.3V device (~10 mA) up to 30 MHz, then draws more current than the 3.3V device at the higher frequencies (~75 mA to ~60 mA). Both devices can run at high speeds (close to 300 MHz) at reasonable power levels.
In Figure 2, the 5V DS90C032 is shown with all four receivers switching compared to only one receiver switching with the other three inputs open. Once again, we see that at low frequencies, the dynamic I_{CC} is stable at $\sim 7\ mA$, then rises to $\sim 75\ mA$ with all four receivers switching and $\sim 25\ mA$ with a single receiver switching at 200 MHz. The substantial increase in power at high frequency is mainly a function of the output and load capacitance.

As you can see in Figure 3, the LVDS receiver dynamic I_{CC} is substantially lower than other industry data transmission standards of PECL and RS-422. Across all frequencies, the LVDS I_{CC} is one-third that of PECL and almost half that of RS-422.

A comparison of the Dynamic I_{CC} of the two LVDS Quad Drivers is shown in Figure 4. At low frequency, the dynamic I_{CC} of the two devices is stable at less than 20 mA. It then rises to $\sim 22\ mA$ at 100 MHz and $\sim 28\ mA$ at 200 MHz. It can also be noted that the 5V device initially draws less current ($\sim 15\ mA$) than the 3.3V device ($\sim 21\ mA$) up to 140 MHz, then draws more current than the 3.3V device at the higher frequencies ($\sim 34\ mA$ to $\sim 27\ mA$). Both devices can run at high speeds (close to 300 MHz).
In Figure 5, the 5V DS90C031 is shown with all four drivers switching compared to only one driver switching with the other three inputs grounded through a 50Ω resistor. Once again, we see that at low frequencies, the dynamic \(I_{\text{CC}} \) is stable at \(\sim 14 \text{ mA} \), then rises to \(\sim 28 \text{ mA} \) and \(\sim 18 \text{ mA} \) at 200 MHz.

As you can see in Figure 6, the LVDS driver dynamic \(I_{\text{CC}} \) is substantially lower than other industry data transmission standards of PECL and RS-422. Across all frequencies, the LVDS \(I_{\text{CC}} \) is one-eighth that of PECL and comparable to RS-422. The low voltage swing feature of LVDS allows for this low power consumption along with high data rates. LVDS signal levels (\(V_{\text{OD}} \) of ±400 mV and \(V_{\text{OH}}/V_{\text{OL}} \) of 1.4V/1.0V) are 50% smaller than PECL (\(V_{\text{OD}} \) of ±800 mV and \(V_{\text{OH}}/V_{\text{OL}} \) of 3.0V/2.2V) and 80% smaller than RS-422 (\(V_{\text{OD}} \) of 3V and \(V_{\text{OH}}/V_{\text{OL}} \) of 3.4V/0.4V). The lower voltage of LVDS allows for lower load current.
LVDS technology can save power in several ways. The power dissipated by the load (the 100Ω terminating resistor) is a mere 1.2 mW. In comparison, an RS-422 driver typically delivers 3V across a 100Ω termination for 90 mW of power consumption. Similarly, LVDS devices require about one-tenth the power supply current of PECL and ECL devices.

In addition to lower power dissipation and static Icc current, LVDS can lower system power through its CMOS current mode driver design. This design greatly reduces the frequency component of the Icc. The Icc vs frequency plot shows that for LVDS, it is virtually flat between 10 MHz to 100 MHz for the quad devices. Compare this to TTL/CMOS transceivers whose dynamic power consumption increases exponentially with frequency in the area of interest between 10 MHz to 100 MHz.

SUMMARY

LVDS is a high speed general purpose interface that can be used in a number of application areas. It is easy to implement AND has a simple single resistor termination scheme. This application note focused on Dynamic Icc vs Frequency for our presently offered LVDS quad receivers and drivers. It showed that the receiver dynamic Icc is stable (~ 10 mA) at low frequencies (up to 10 MHz) and one-third that of PECL and almost half that of RS-422 across all frequencies. The driver dynamic Icc is stable (~ 20 mA) at low frequencies (up to 50 MHz) and one-eighth that of PECL across all frequencies. RS-422 has a speed limitation and increasing dynamic Icc at the upper frequency end. This difference in lower power consumption and higher speeds by LVDS over other industry data transmission standards is achieved by its differential low voltage signals and unique design.

REFERENCES

For additional information on LVDS applications and operation, please refer to the following guide that can be ordered through the Technical Response Group in Arlington, TX at: 1-800-272-9959 or through the National website at: www.national.com

LVDS Owner’s Manual - Design Guide
Publication #550062-001
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use. TI is neither designed nor intended for use in automotive applications or environments unless the specific TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers that use TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI, further agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are designed and intended for use in commercial, industrial, and consumer applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>URLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
<td>www.ti.com/consumer-apps</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td>Wireless Connectivity</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated