Application Note 1113 Serial Digital Video and Interface RAPIDESIGNER

Operation and Applications Guide

Literature Number: SNLA011
INTRODUCTION
The National Semiconductor Serial Digital Video and Interface RAPIDESIGNER makes quick work of calculations frequently used in the designs using National's Comlinear CLC-series of SMPTE 259M serial digital video components and other serial data transmission products on printed circuit boards. Based on principles contained in the CLC-series data sheets and the Interface Databook, the Serial Digital Video and Interface RAPIDESIGNER benefits from our many years experience in designing and manufacturing data transmission and interface products and from helping our valued customers obtain the most from National's Interface products.

If you would like information about other National Semiconductor products, please contact one of our Customer Response Centers: 1-800-272-9959 (USA), 49-0-180-532-78-32 (Europe), or 81-043-299-2308 (Japan). Our Worldwide Web site is: http://www.national.com. For applications assistance on Interface products, call our Interface Applications Hotline, 1-408-721-8500 in Santa Clara, CA, USA.

CAUTIONARY STATEMENT
National Semiconductor assumes no responsibility and accepts no liability for results obtained or application of these results from the use of the Serial Digital Video and Interface RAPIDESIGNER. In order to obtain meaningful and useable results from this calculator, the user must be familiar with RF design techniques, PLL design, general transmission line theory and the application and analysis of transmission lines with pulse excitation.

The resolution of results obtainable from the Serial Digital Video and Interface RAPIDESIGNER is similar to that of most common Napierian sliderules, that being two to three significant digits. The accuracy of results from the sliderule depends on the relationships of the numerical factors as inputs and the approximations used for the calculations. Accuracy limits and restrictions for approximations and calculations is given in Appendix A, if known.

TRANSMISSION LINE GEOMETRY
Microstrip and stripline geometries as used in the Serial Digital Video and Interface RAPIDESIGNER are defined as shown below. In common practice, \(h \) represents dielectric thickness for microstrip structures and \(b \) that for stripline. For simplicity, the Serial Digital Video and Interface RAPIDESIGNER uses only \(h \) to represent dielectric (substrate) thickness. Stripline structures treated by the RAPIDESIGNER are symmetrical and differential lines are edge-coupled only.

REACTANCE FREQUENCY (SIDE ONE)
The reactance frequency scales are used to find capacitive reactance \(X_C \), capacitance \(C \), or frequency \(f \), given any two of these parameters. Similarly, inductive reactance \(X_L \), inductance \(L \), or frequency \(f \), may be found on the appropriate scales. In addition, the value of capacitance and inductance that are resonant at a given frequency may be found.

EXAMPLES
1. Find the capacitance value that will give 0.2\(\Omega \) reactance at 50 MHz.
 A. Set 50 MHz on the Frequency scale opposite the arrow.
 B. Opposite 0.2\(\Omega \) on the Capacitive Reactance scale, read 17 nF on the Capacitance scale.
2. Find the frequency at which 25 nH will have 10\(\Omega \) reactance.
 A. Set 0.025 \(\mu \)H (25 nH) on the Inductance scale opposite 10\(\Omega \) on the Inductive Reactance scale.
 B. Read 63 MHz on the Frequency scale at the arrow.
3. Find the capacitance value that will be resonant with 20 mH at 100 kHz.
 A. Set 100 kHz on the Frequency scale at the arrow.
 B. Opposite 20 mH on the Inductance scale, read 13 k\(\Omega \) on the Inductive Reactance scale.
 C. Opposite 13 k\(\Omega \) on the Capacitive Reactance scale, read 130 pF on the Capacitance scale. (The hand-calculated value is 127 pF.)
DIFFERENTIAL Z₀ (SIDE ONE)

This set of scales finds the approximate characteristic impedance of edge-coupled, differential-pair microstrips or striplines. Before using these scales, the characteristic impedance Z₀ of the individual conductor must first be found using the Microstrip and Stripline Z₀ scales on Side Two. Next, the differential impedance, Zₐₜₐₜ, is found based on the line spacing, s, and dielectric thickness, h. Both conductors of the pair must have the same physical cross sectional dimensions. Spacing between pairs of differential conductors should be greater than 2s to avoid excessive crosstalk between and avoid affecting the impedance of adjacent line structures.

The formulations and computational method used are unique to the Serial Digital Video and Interface RAPIDESIGNER. The computation is based on an approximation of the reverse-crosstalk parameter of a coupled line pair. It has been shown that this parameter can be used to express the mutual inductance and capacitance of the line pair. Therefore, the approximate characteristic impedance of the differential pair may be computed.

Note: The range of s/h for microstrip is limited to 0.20 ≤ s/h ≤ 3.0. The range of s/h for stripline is 0.20 ≤ s/h ≤ 1.5.

EXAMPLE

1. Find the differential impedance for an edge-coupled pair of 75Ω microstrips spaced 10 mils apart on a 20 mils thick substrate.
 A. Move slide to set 10 mils on the s-scale at 20 mils on the h-scale (upper window).
 B. Read 0.702 on the Microstrip Factor scale at the arrow (middle window).
 C. Move slide to set 75Ω on the Z₀ scale opposite 0.702 on the Factor scale (lower window).
 D. Read 105Ω on the Zₐₜₐₜ scale at arrow.

RETURN LOSS (SIDE ONE)

These scales calculate the return loss when line impedance, Z₀, and source or load impedance are known. The return loss is always a positive number.

EXAMPLE

1. Find the return loss when a 50Ω transmission line is terminated in 75Ω.
 A. Move slide to set the 50Ω transmission line impedance at the arrow.
 B. Read 14 dB return loss at the 75Ω load resistance.

MICROSTRIP AND STRIPLINE Z₀

These Microstrip and Stripline Z₀ scales calculate the characteristic impedance of microstrip or stripline transmission lines.

In solving microstrip and stripline problems, the Serial Digital Video and Interface RAPIDESIGNER uses separate scale sets based on the conductor thickness, t. The values for t are the standard thicknesses for copper cladding used in printed circuit board material manufacture given in common oz/ft² values.

The two most common uses of these scales are to find:
1. impedance Z₀ given line width w, dielectric thickness h, conductor thickness t, and dielectric constant εᵣ or
2. line width w given the other factors.

The procedures given in the following examples are the same for either microstrip or stripline. Of course, the Factor and Z₀ scales appropriate to the particular line type must be used.

EXAMPLES

1. Find the conductor line width to yield a 93Ω microstrip on a 30 mil substrate with 0.7 mil (1/2 oz) copper cladding and dielectric constant of 3.8.
 A. Move slide to set 93Ω on the Microstrip Z₀ scale opposite 3.8 on the εᵣ scale directly below.
 B. Read +25 on the Microstrip Factor scale at the arrow.
 C. Move slide to set 30 mils on the h-scale at the arrow, top window.
 D. At the window and scale for t = 0.7 mils (1/2 oz), read 19 mils on the w-scale opposite +25 on the Factor scale directly above.

2. Find the impedance of a 25 mils wide microstrip conductor on a substrate with εᵣ = 4.3, t = 1.4 mils (1 oz cu.) and h = 20 mils.
 A. Move slide to set 20 mils on the h-scale at the upper arrow, top section.
 B. In the section for t = 1.4 mils (1 oz) opposite 25 mils on the w-scale, read −17 on the Factor scale directly below.
 C. Move slide to set −17 on the Microstrip Factor scale at the arrow in middle window.
 D. Read 65Ω on the Microstrip Z₀ scale opposite 4.3 on the εᵣ scale directly below.

INTRINSIC DELAY (SIDE TWO)

This scale calculates the per unit-length propagation delay of a wave traveling on an unloaded microstrip or stripline transmission line.

EXAMPLE

1. Find the delay of a stripline with εᵣ = 4.5.
 A. Move slide to set 4.5 on the Stripline εᵣ scale at the upper arrow.
 B. Read 142 ps/in on the Tₜ scale at the lower arrow.
CLC016 DESIGN FACTORS (SIDES THREE AND FOUR)
These scales aid the designer in selecting component values which govern operation of the CLC016 Data Retiming PLL. Reference should also be made to the data sheet for the CLC016 for a more complete explanation of its operation.

VCO FREE-RUNNING FREQUENCY (SIDE FOUR)
The CLC016's VCO free-running frequency is determined by resistor values connected to pins R0 through R3. The graduations and numbering of the RAPIDESIGNER's Rn scale are in standard 1% resistor values. This simplifies choosing the standard 1% resistor value required for each frequency.

EXAMPLE
1. Find the resistor value that will set the VCO free-running frequency to 270 Mbps.
 A. Move the slide to set 270 Mbps at the upper arrow.
 B. Read 3.480Ω at the lower arrow.

LOOP BANDWIDTH (SIDE THREE)
The low-pass filter's fractional loop bandwidth is determined by the choice of fBW, fDATA, data transition density, ρ, and resistor, Rbw. The fractional loop bandwidth, λBW, is determined by the ratio of fBW to fDATA. The value of resistor, Rbw, is a function of the fractional loop bandwidth, λBW, and the data transition density, ρ.

EXAMPLES
1. Find the fractional loop bandwidth and bandwidth setting resistor, Rbw, for a fractional loop bandwidth of 1 MHz, a data rate of 270 Mbps and data transition density of 0.5.
 A. Move the slide to set 1 MHz on the fBW scale opposite 270 Mbps on the fDATA scale in the upper window.
 B. Read 0.0037 (0.37%), the fractional loop bandwidth at the arrow in the same window.
 C. Without moving the slide, read 681Ω (nearest standard 1% value) for Rbw opposite ρ = 0.5 in the lower window.
2. Find the fractional loop bandwidth and bandwidth setting resistor, Rbw, for a fractional loop bandwidth of 650 kHz a data rate of 270 Mbps and data transition density of 0.5.
 A. Move the slide to set 650 kHz on the fBW scale opposite 270 Mbps on the fDATA scale in the upper window.
 B. Read 0.0024 (0.24%), the fractional loop bandwidth at the arrow in the same window.
 C. Without moving the slide, read 499Ω (nearest standard 1% value) for Rbw opposite ρ = 0.5 in the lower window.

JITTER PEAKING AND ACQUISITION TIME (SIDE THREE)
The jitter peaking factor, δ, is determined by the choices of frequencies fZ and fBW. The ratio of these frequencies determines the critical frequency ratio, α, which relates the jitter peaking factor, δ, to the previously found value of Rbw, thus allowing the value of the loop filter capacitor, Cz, to be found.

EXAMPLE
1. Find the critical frequency ratio, jitter peaking factor, loop filter capacitor, Cz, and the acquisition time estimate for Example 2 in the preceding section (a fractional loop bandwidth of 650 kHz a data rate of 270 Mbps) if 0.05 dB of jitter peaking can be tolerated.
 A. Move the slide to set 0.05 on the Jitter Peaking Factor scale opposite the lower arrow in the window
 B. Read 0.007 on the Critical Frequency Ratio scale at the upper arrow in the same window.
 C. Without moving the slide, read 4.5 kHz on the fZ scale opposite 650 kHz on the fBW scale in the upper window.
 D. Move the slide to set 0.007 on the Critical Frequency Ratio scale in the middle window opposite 650 kHz on the fBW scale in the same window.
 E. Read 70 nF (68 nF closest standard value) on the Cz scale opposite 500Ω on the Rbw scale in the same window.
 F. Move the slide to set 70 nF on the Cz scale opposite 270 Mbps on the fDATA scale in the lower window.
 G. Read 2 ms on the Acquisition Time scale at the arrow in the same window.

CAPACITANCE Cp (SIDE THREE)
The loop filter capacitor, Cp, affects the amount of jitter and its peaking value. It can also affect the ability of the loop to acquire lock.

EXAMPLE
1. Continuing with the values used in the preceding example, find the value of Cp.
 A. Move the slide to set 500Ω on the Rbw scale opposite 650 kHz on the fBW scale
 B. Read 120 pF on the Cp scale at the arrow in the same window.

VECTOR IMPEDANCE (SIDE FOUR)
These scales evaluate the relationship between a network’s resistance (R), reactance (X), impedance (Z), phase angle (θ) and Q (Tan θ). Both R-C and R-L circuits are handled.

EXAMPLE
1. If the impedance of a network is 50Ω and the real part is 25Ω. Find the reactive component, phase angle and circuit Q.
 A. Move the slide to set 50Ω on the Impedance scale at the arrow.
 B. Opposite 25Ω on the Resistance scale, read 60˚ on the Phase Angle scale in the same window.
 C. Without moving the slide, read 43.3Ω on the Reactance scale opposite 60˚ on the Phase Angle scale in the lower window.
 D. Without moving the slide, read 1.7 on the Q scale opposite 43.3Ω on the Reactance scale in the same window.
THEVENIN EQUIVALENT TERMINATIONS (SIDE FOUR)

These scales compute the resistances which, when connected from the transmission line’s receiving end to the positive power supply terminal and the negative supply terminal, provide the equivalent termination resistance, R_T, and voltage, V_T, to that of a single resistor connected to a termination voltage supply. The corresponding resistances have been given the nomenclature R_{VCC} and R_{VEE} to signify the resistance connected from the V_T node to the most-positive supply terminal and the most-negative terminal, respectively, regardless of supply polarity.

The RAPIDESIGNER handles two situations with respect to the polarities of supplies V_S and V_T: 1) the signs of both V_S and V_T are positive or 2) both are negative. Appropriate R_{VCC} and R_{VEE} scales give correct resistor values for both conditions. When using these scales, pay close attention to the correct scale being used for the supply polarities being used. The RAPIDESIGNER cannot solve the situation where supplies have mixed polarities. These situations can be evaluated by transforming the supply values to an all-positive or all-negative supply situation.

EXAMPLES

1. Find the resistances which, connected across a $+5V$ supply, will give a Thevenin equivalent voltage of $+3V$ and resistance of 75Ω.

 A. Move the slide to set 3 on the V_T scale opposite 5 on the V_S scale in the upper, left-hand window.

 B. Read 2.5 on the Factor scale at the arrow in the same window.

 C. Move the slide to set 2.5 on the Factor scale opposite 75 on the Equivalent Termination Resistance scale in the lower window.

 D. Read 187Ω (nearest 1% value) on the R_{VEE} scale (for positive values of V_S and V_T) at the arrow.

 E. Move the slide to set 5 on the V_S scale opposite 3 on the V_T scale in the right-hand window.

 F. Read 124Ω (nearest 1% value) on the R_{VCC} scale opposite 75Ω on the Equivalent Termination Resistance scale in the same window.

2. Find the resistances which, connected across a $-5.2V$ supply, will give a Thevenin equivalent voltage of $-2.0V$ and resistance of 50Ω.

 A. Move the slide to set 2 on the V_T scale opposite 5.2 on the V_S scale in the upper, left-hand window.

 B. Read 1.6 on the Factor scale at the arrow in the same window.

 C. Move the slide to set 1.6 on the Factor scale opposite 3 on the V_T scale in the right-hand window.

 D. Read 124Ω (nearest 1% value) on the R_{VCC} scale (for positive values of V_S and V_T) opposite 75Ω on the Equivalent Termination Resistance scale in the same window.

 E. Move the slide to set 5.2 on the V_S scale opposite 2 on the V_T scale in the right-hand window.

 F. Read 130Ω (nearest 1% value) on the R_{VEE} scale (for negative values of V_S and V_T) opposite 50Ω on the Equivalent Termination Resistance scale in the same window.

APPENDIX A — SCALE FORMULATIONS

REACTANCE FREQUENCY

$$X_C = \frac{1}{2\pi f \tau} \text{ Ohms}$$

$$X_L = 2\pi f L \text{ Ohms}$$

DIFFERENTIAL Z_0

For microstrip line the differential impedance, Z_{diff}, is:

$$Z_{diff} \approx 2Z_0 \left(1 - 0.48e^{-0.96\frac{h}{\epsilon_r}} \right) \text{ Ohms.}$$

For stripline the differential impedance, Z_{diff}, is:

$$Z_{diff} \approx 2Z_0 \left(1 - 0.374e^{-2.9\frac{h}{\epsilon_r}} \right) \text{ Ohms.}$$

Note: These functions were derived from empirical data. The actual accuracy has not been determined experimentally. Various sources cite possible errors of up to ±10%. The practical ranges for Z_0 and Z_{diff} are from 20Ω to about 150Ω.

RETURN LOSS

$$R.L. = 20 \times \log_{10} \left| \frac{R_L(S) + Z_0}{R_L(S) - Z_0} \right| \text{ dB}$$

Where:

$R_L(S)$ = load (or source) resistance in Ω (Ohms).

Z_0 = transmission line impedance in Ω (Ohms).

MICROSTRIP AND STRIPLINE Z_0

Microstrip characteristic impedance is:

$$Z_0 = \frac{60}{0.475\epsilon_r + 0.67} \ln \left[\frac{4h}{0.67(0.8w + t)} \right] \text{ Ohms.}$$

If $w \leq 2h$ (maximum error ≅ 3%).

Microstrip line width is:

$$w = \frac{7.463h}{\exp \left(\frac{Z_0\sqrt{0.475\epsilon_r + 0.67}}{60} \right) - 1.25t} \text{ mils}$$

Where: w = trace width in mils., t = trace thickness in mils., h = dielectric thickness in mils., ϵ_r = relative dielectric constant (dimension less). Note: All geometric variables must be in the same dimensional units.

Stripline characteristic impedance is:

$$Z_0 = \frac{60}{\sqrt[4]{\epsilon_r}} \ln \left[\frac{4b}{0.67\pi(0.8w + t)} \right] \text{ Ohms.}$$

Best accuracy results if parameters are kept within these guiding ratios: $b - t > 2w$ and $b > 4t$.
Stripline line width is:

\[w = \frac{2.375b}{\exp \left(\frac{Z_0 \sqrt{\varepsilon_r}}{60} \right)} - 1.25 \text{ mils} \]

Where: \(b \) = dielectric thickness (between ground planes) in mils. All other variables are as previously defined. **Note:** As for \(Z_0 \), guiding ratios apply.

INTRINSIC DELAY

The intrinsic propagation delay for microstrip is:

\[T_d = 84.73 \sqrt{0.475 \varepsilon_r} + 0.67 \text{ ps/in.} \]

The intrinsic propagation delay for stripline is:

\[T_d = 84.73 \sqrt{\varepsilon_r} \text{ ps/in.} \]

Where, \(\varepsilon_r \) = relative dielectric constant (dimensionless).

CLC016 DESIGN FACTORS

VCO FREE-RUNNING FREQUENCY

\[R_n = 10^6 \frac{f_{DATA}}{f_{DATA}} - 200 \Omega \]

Where: The data rate, \(f_{DATA} \), is given in Mbps.

LOOP BANDWIDTH

\[\lambda_{BW} = \frac{f_{BW}}{f_{DATA}} \]

\[R_{BW} = \frac{104.7 \times 10^3 \lambda_{BW}}{\rho} \Omega \]

Where: The data rate, \(f_{DATA} \), is given in Mbps, the loop bandwidth, \(f_{BW} \), is given in Hz and the data transition density, \(\rho \), is a number between 0.1 and 1.0.

JITTER PEAKING AND ACQUISITION TIME

\[\alpha = \frac{f_T}{f_{BW}} \geq \delta(0.134 + 0.058\delta) \]

\[C_Z = \frac{0.1592}{\alpha R_{BW} f_{BW}} \text{ capacitance units} \]

\[t_{ACQ} \leq \frac{C_Z}{0.14 \text{ pF} \times f_{DATA} \text{ (Mbps) \times 10^6}} \text{ time units} \]

CAPACITANCE \(C_p \)

\[C_p = \frac{0.0398}{R_{BW} f_{BW}} \text{ capacitance units} \]

VECTOR IMPEDANCE

\[Z^2 = R_s^2 + X^2 \text{ Ohms (} \Omega \text{).} \]

\[\tan \Theta = \frac{X}{R_s} \text{ degrees.} \]

\[Q = \tan \Theta \text{ (dimensionless)} \]

THEVENIN EQUIVALENT TERMINATIONS

For positive (supply voltage) values of \(V_s \) and \(V_T \):

\[R_{VCC} = R_T \times \left(\frac{V_s}{V_T} \right) \Omega \]

\[R_{VEE} = R_T \times \left(\frac{V_s}{V_s - V_T} \right) \Omega \]

For negative (supply voltage) values of \(V_s \) and \(V_T \):

\[R_{VCC} = R_T \times \left(\frac{V_s}{V_s - V_T} \right) \Omega \]

\[R_{VEE} = R_T \times \left(\frac{V_s}{V_T} \right) \Omega \]
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such safety-critical applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com