AN-757 Measuring Ethernet Tap Capacitance

Literature Number: SNLA022
INTRODUCTION
When a node is added to an Ethernet network, its nodal capacitance changes the impedance of the cable at the point of connection to the cable. The impedance change causes a reflection of the Ethernet waveform, which distorts the waveform. The more the capacitance the greater the distortion, and eventually with large enough node capacitances the Ethernet signal could become so distorted that the packet data would become corrupted when decoded by a network node. For this reason the IEEE802.3 standard specifies a maximum value of capacitance that a node may add to the network, as well as a minimum node to node distance spacing. Since the capacitance of a node includes stray inductances, the effective capacitance of a node connection cannot be measured simply by using a capacitance meter. This note presents the method for measuring the capacitance of an Ethernet tap for 10BASE5 or a BNC "T" for 10BASE2.

THE STANDARD'S REQUIREMENTS
To properly make the measurement, it is important to understand how the standard specifies the capacitance of a node. To quote the IEEE802.3 standard:

8.3.1.1 Input Impedance: The shunt capacitance presented to the coaxial cable by the MAU circuitry (not including the means of attachment to the coaxial cable) is recommended to be no greater than 2 pF. The resistance to the coaxial cable shall be greater than 100 kΩ.

The total capacitive load due to MAU circuitry and the mechanical connector as specified in 8.5.3.2 shall be no greater than 4 pF.

These conditions shall be met in the power-off and power-on, not transmitting states (over the frequencies BR/2 to BR).

The magnitude of the reflection from a MAU shall not be more than that produced by a 4 pF capacitance when measured by both a 25 ns rise time and 25 ns fall time waveform. This shall be met in both the power-on and power-off, not transmitting states.

Table I. Maximum Capacitance Allowed in IEEE802.3

<table>
<thead>
<tr>
<th>Standard</th>
<th>Electrical Circuitry</th>
<th>Mechanical Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BASE5</td>
<td>2 pF</td>
<td>2 pF</td>
</tr>
<tr>
<td>10BASE2</td>
<td>4 pF</td>
<td>4 pF</td>
</tr>
</tbody>
</table>

Note: Thickwire or Thick Ethernet refers to 10BASE5 and Thinwire or Thin Ethernet refers to 10BASE2.

THE TEST METHOD
Due to the nature of the capacitance of a DTE (Data Terminal Equipment), rather than perform a simple capacitive measurement using a meter, the capacitance of the network node is more accurately measured by testing it in an environment where the actual signal reflection caused by the capacitance of a node attachment is measured when applying a typical Ethernet signal. The magnitude of the reflection is then correlated to an equivalent capacitance. This is the most appropriate method, since it is the signal degradation due to the capacitive load that is the important consideration in defining the above specifications.
With the above in mind, the test is performed by first measuring the reflection caused by the attachment of a node. Then the DTE is replaced with a reference variable capacitor, and the capacitor’s value is adjusted until the capacitance that causes the same size reflection is determined. The capacitance of the node is therefore the same as the reference capacitance value that causes the same amplitude reflection.

TEST SETUP AND CABLE

An example test configuration which measures the capacitance of the Thickwire Ethernet is shown in Figure 2. The waveform applied to the test node is an important consideration in setting up the test, as it will affect the resultant value of capacitance. In particular the rise and fall times must be carefully chosen to reflect the capacitance seen in an Ethernet network, as described in the next section.

The cable lengths and spacing between the scope input and the transceiver’s connection are chosen to ensure that the reflection due to the transceiver appears on the flat portion of the test waveform. This allows accurate measurement. The total cable length is equivalent to the full 10BASE5 length of 500m.

An oscilloscope is used to measure the voltage of the reflection. The scope, with a 1 MΩ input impedance, as shown in Figure 2, is connected directly to the cable without a probe. This eliminates any errors due to the probe. The distance between transceiver connection point “A” and the scope is set so that the reflections will arrive at the scope right after the signal rise and fall times. Moving point “A” any further makes the reflections smaller in amplitude (cable attenuation) and therefore harder to measure.

On the scope’s display measurements are made at the point immediately after the rise time. Reflections are then compared to the ones for known discrete capacitors.

THE TEST WAVEFORM

In normal network operation the signal on the coax cable has rise and fall times of 25 ns ± 5 ns (defined by the IEEE802.3 standard). With a purely capacitive load applying signals with faster (or slower) edges cause larger (or smaller) reflections than would be seen on a typical network. If the node were purely capacitive this would not affect the measurement. The larger (or smaller) node reflection for a given parasitic capacitance would track with the reference capacitance’s reflection yielding accurate measurements.

However, the node is actually not a pure capacitance, but has some series inductance associated with the network connection as shown in Figure 1. The application of signals with faster than 20 ns rise and fall times actually result in an unrealistically low capacitance measurement. This is because the nodes capacitance is buffered by the stray series inductances which reduce the reflection magnitude when compared to the pure capacitance. This correlates to a lower than actual capacitance.

On the other hand applying very slow rise and fall times (slower than 30 ns) result in the measurement of a larger capacitance than actual. This is because the series inductance effects are less than would be seen with a nominal waveform.

Since it is desirable to measure the capacitance in such a way as to correlate to the effective capacitance seen when IEEE802.3 signaling is used, the best compromise choice is to select a 25 ns rise and fall times for this test. (This is the reason for this choice in the actual standard.) Again, the reason behind this decision is that although the ≥ 30 ns edges indicate larger capacitances a signal with 25 ns edge produces results that more correctly represent the actual effect of the attached node’s capacitance.

FIGURE 2. Test Setup
As shown in Figure 3, a low frequency trapezoidal signal is used. This will keep the reflections from each edge of the signal well away from the next edge enabling easier measurement. The 2 Vpp test input signal is the typical voltage swing on the coax cable in normal operation. In the case of a discrete capacitor the voltage level of the signal may not be important. However, due to the non-linearity of the node and DP8392 capacitance a typical voltage signal should be used following the same rational as was used for the signal rise and fall times.

Note: This figure is conceptual. It does not show the waveform details.

FIGURE 3. Input Test Waveform

TEST RESULTS
A special jig was built to connect the ICs to point “A” in Figure 2. This greatly improves measurement repeatability. Data repeatability of 0.01 pF is achieved.

Typical data for RXI and TXO capacitances are 1.0 pF and 2.0 pF respectively. Total node capacitance can be reduced to around 1.6 pF with the addition of a small capacitance diode in series with the TXO output, as shown in Figure 5. For Ethernet applications two diodes in series can be used instead.

FIGURE 4. Example of Reflection

INACCURACIES OF THE CAPACITANCE METER
As stated, in a real network, it is not the node capacitance that creates a problem, but too large a reflection caused by this capacitance. This reflection distorts the cable signal. Therefore the best method of test is to measure the reflection under true network waveforms. By the same analogy capacitance meters which have a test signal frequency that does not correspond to 25 ns rise and fall time do not reveal a true measurement of capacitance, and so capacitive measurements done only with a capacitance meter are usually (almost always) inaccurate to the true effective capacitance as seen by the network cable.

FIGURE 5. DP8392 Connection Diagram
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and creates unenforceable agreements. TI is not responsible or liable for such statements.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and creates unenforceable agreements. TI is not responsible or liable for such statements.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated