Futurebus+ BTL Grounding Scheme

Due to the high current and very high speed capability of the Futurebus+ driver output stage, device ground pin allocation, circuit board layout and bus grounding are critical factors that affect the system performance. The series inductance on any ground path should be minimized to improve ground noise and ringing. The voltage spike generated by an inductor is described by the equation:

\[V = L \frac{di}{dt} \]

where,
\(V \) Voltage
\(L \) Inductance
\(di \) Change in Current
\(dt \) Change in Time

Ground bounce is dependent on the rate at which current changes with respect to time. Reducing the current passing through the inductor and minimizing the inductance will reduce the noise.

It is desirable to have multiple ground pins to distribute the current among several ground paths, thereby reducing the ground bounce. There are many ground pins on the transceivers which can be categorized into three types, Bn GND, GND and QGND. These grounds are electrically isolated within the device to reduce noise coupling between them. Externally the grounds should be connected to a common point. The driver is capable of sinking up to 80 mA with a rise and fall time of 3 ns typical. Assuming that \(L = 10 \text{ nH} \), the noise spike will be \((10 \text{ nH}) (80 \text{ mA}/3 \text{ ns}) = 266 \text{ mV} \) per output which is acceptable. Improper ground pin allocation can have devastating consequences. In the following example, we will assume a 9-bit device with a single ground return. The noise spike from this will be \((10 \text{ nH}) (80 \text{ mA}/3 \text{ ns}) (9 \text{ output}) = 2.4 \text{ V} \) which is unacceptable. For this reason, each driver output has a dedicated ground return, Bn GND. QGND, quiet ground, is used for DC circuits such as bandgaps, and current sources. QGND, the most critical of the ground pins, is a reference point to the bandgap circuit which sets the receiver threshold and other non-switching circuits. The purpose of isolating QGND is to keep the receiver threshold at the same reference as signals coming off the backplane. Noise coupled to this ground, which should be avoided, will have a direct effect on the receiver threshold.

The goal is to isolate QGND from high current switching signals. The principles above can be applied to printed circuit board design using Futurebus+ transceivers. Figure 1 and Figure 2 illustrate these principles. The board shown on Figure 1 has two ground planes. Both ground planes are connected to each other and to the backplane ground at the connector. In a Futurebus+ board, a third of the connector pin array is allocated to ground along with the power ground pins which are not shown. QGND is isolated from Bn GND on separate ground planes. GND should be connected on the same plane as Bn GND, as shown on Figure 1. In Figure 2, there is a single ground plane which connects GND and Bn GND. QGND is connected to the connector ground pin via a PCB trace. These traces should not carry any switching currents and should be kept as short as possible. There are many ways to layout and construct the grounding scheme for a board as long as you adhere to these principles.

1. Reduce the ground path inductance from the transceiver to the backplane.
 A. Short traces.
 B. Ground planes and wide traces.
 C. Use vias to connect ground pins to ground planes.
 D. Use as many connector pins for ground as possible.
 E. Place transceivers as close to the connector as possible.

2. Isolate Bn GND’s from QGND’s.
 A. Separate ground paths common at connector only.

![Figure 1. Ground Structure with Two Ground Planes](image)
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

FIGURE 2. Ground Structure with One Ground Plane

Futurebus+ BTL Grounding Scheme

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications. In such case, buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated