DS3695, DS3695A, DS3695AT, DS3695T, DS96172, DS96174, DS96F172MQML, DS96F174MQML

Application Note 847 FAILSAFE Biasing of Differential Buses

Literature Number: SNLA031
FAILSAFE Biasing of Differential Buses

OVERVIEW
Multi-Point bus configurations present two potential problems to the system I/O designer that do not commonly occur in Point-to-Point configurations. The two problems that the I/O system designer should take into account are bus contentsions and the idle bus state. Bus contention occurs when more than one driver is active at a time during which the state of the bus is undetermined. Contentions may occur either by software or hardware errors. The second problem is an unknown bus state when all drivers are OFF. FAILSAFE biasing solves this problem by biasing the bus to a known state when ALL drivers are in TRI-STATE® (OFF). This application note is devoted to the topic of FAILSAFE biasing of differential buses.

INTRODUCTION
FAILSAFE biasing provides a known state when all drivers are in TRI-STATE (Hi-Z, OFF). This is especially important in bus configurations that employ more than one driver (transceiver), and is commonly known as a Multi-Point application (see Figure 2).

Electrical Characteristics Standard TIA/EIA-485 specifies that a maximum of 32 unit loads can be connected to a bus. A transceiver (driver/receiver pair) normally represents one unit load (see Figure 2). The bus is a half duplex bi-directional bus, (as data can flow in both directions), but only one driver should be active at a time. Termination is required (in most cases), and is only located at the two extreme ends of the bus. Note, that the termination shown on the left of Figure 1 also provides a FAILSAFE bias.

BUS STATES
A FAILSAFE biased bus has only two states, HIGH (driven HIGH and FAILSAFE HIGH) and LOW (neglecting the transition region, and bus contentsions). The bus can be driven HIGH or LOW by an active driver, or biased to a known state by external pull up and pull down resistors. These resistors provide the FAILSAFE bias, and the termination configuration is also known as a “power termination”. The two bus states are shown in Figure 2.

In some applications these two states are defined as MARK/SPACE, OFF/ON, or 1/0. The definition of the two states is application dependent. When the signal transitions through the threshold region (±200 mV) the output state of the receiver is undefined. In Figure 2, the line is driven LOW, transitions HIGH, then the driver is disabled. The bus however, remains HIGH due to external FAILSAFE biasing.

Without FAILSAFE biasing, the receiver output would be undefined when all drivers are OFF. The line would settle to only 1 mV–5 mV of each other (|VOA –V OB |, due to the internal input impedance network of the receiver), which is within the receiver’s threshold limits (≤200 mV). If external noise is coupled onto the line, a false transition could occur, causing an error. In an asynchronous application, this false transition could be interpreted as a framing error, false start bit, or cause a false interrupt.

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

FIGURE 1. Typical Multi-Point Application
A popular format for low speed data transmission is an asynchronous protocol. A typical format is composed of 12 bits. The start bit initiates the timing sequence. This is detected by a transition from HIGH to LOW. Next are eight data bits, followed by an optional parity bit. Lastly, the line is driven HIGH for one or two bits (stop bits), signifying the end of the character. This format is illustrated in Figure 3. If another character is to be sent, the next start bit initiates the whole process all over again. However, if this was the last character, the line should remain HIGH until the next start bit, but the active driver is disabled. This presents a problem in multi-point applications, because between data transmissions all drivers are OFF. With no active drivers, the line is floating, and receiver outputs are undetermined. There are several solutions to this problem. One is through the use of alternate protocols (software), while the other is a hardware fix. The hardware fix uses external resistors to bias the line HIGH, when all drivers are off. The remainder of the application note describes the hardware method and the selection of component values.

In a Point-to-Point application (see Figure 4), the driver is normally always enabled. In this case the bus has only two states, driven HIGH, and driven LOW. FAILSAFE biasing is not needed, unless the driver's enabling pin is also switched.

CALCULATING RESISTOR VALUES FOR FAILSAFE BIASING

The external resistors are selected such that they provide at least a 200 mV (maximum receiver threshold) bias across the line, and not substantially load down the active driver. In addition, the following guidelines should be met. The pull up resistor (Ra) and the pull down resistor (Rd) should be of equal value. This provides symmetrical loading for the driver. Termination resistor Rb should be selected such that it matches the characteristic impedance (Zc) of the twisted pair cable. The termination resistor matches the line, Rb = Zc, there will be no reflections. At the other end of the cable, the equivalent resistance of Rc, Ra and Rd should also match the characteristic impedance of the line. In this case Rc is in parallel with Ra plus Rd (Rc/(Ra + Rd)). For this equivalent resistance to be matched to the line Rc must be greater than Zc. Rc is typically 100–200 greater than Zc, but the actual value depends upon the values Ra and Rd. The FAILSAFE bias (Vfsb) is the potential dropped across the line. Note that this equation neglects cable resistance (see appendix), and that Rb is in parallel with Rc (Req = Rb // Rc). Therefore, the FAILSAFE bias is simply a voltage divider between Req, Ra, and Rd. The worst case occurs at Vcc − 5%, Ra and Rd ± % tolerance, and Rc and
Rb – % tolerance. Under the worst case conditions the FAILSAFE bias must be greater than 200 mV for the receiver output to be in a guaranteed state.

Example calculations for selecting FAILSAFE bias resistors:

Note: For this example assume the cable has a characteristic impedance (Zo) of 120Ω.

Step 1 Assume that Rc and Rb are equal and are selected to match Zo.
 Rc = Rb = Zo = 120Ω

Step 2 Calculate the equivalent resistance of Rc//Rb.
 Rc//Rb = 120Ω//120Ω = 60Ω

Step 3 Calculate the Pull up and Pull down resistor values knowing that the FAILSAFE bias is 200 mV, and VCC = 5V.

 Vfsb = VCC (Req/(Ra + Req + Rd))
 solving for R' (defined as Ra + Rd)
 R' = ((Req)VCC/Vfsb) – Req
 R' = ((60Ω)(5V/0.2V)) – 60Ω = 1440Ω

Since Ra and Rd are equal, Ra = Rd = 1440Ω/2 = 720Ω

Step 4 Recalculate the equivalent resistance of Rc//(Ra + Rd).
 Rc//(Ra + Rd) = 120Ω//(720Ω + 720Ω) = 110Ω

Since the equivalent resistance is close (within 10%) to the characteristic impedance of the cable (Zo), no further adjustment of resistor values is required.

However, for the perfectionist, the matched value of Rc can be calculated by setting the following equation to Zo and solving for Rc.

 Zo = Rc // (Ra + Rd)
 ∴ Rc = 131Ω

Now the equivalent resistance (Req = Rc // Rb) becomes 131Ω // 120Ω = 62Ω, which is very close to the original 60Ω. Standard value resistors values can be substituted to ease resistor selection, availability, and cost, before recalculating the FAILSAFE bias potential. Using a 5% tolerance table we find the following standard resistor values:

- Ra = 750Ω, Rb = 120Ω, Rc = 130Ω, Rd = 750Ω

In order to verify that the selected values meet the criteria the following calculations should be completed:

1. Rc//(Ra + Rd) = Zo
 120Ω/(750Ω + 750Ω) = 120Ω

2. Req = Rb//Rc
 120Ω/130Ω = 62Ω

3. Vfsb = VCC (Req/(Ra + Req + Rd))
 5V(62Ω/(750Ω + 62Ω + 750Ω)) = 200 mV

Based on the example shown above, and a twisted pair cable with characteristic impedance of 120Ω, it has been determined that a 750Ω pull up and pull down resistor will provide a FAILSAFE bias of 200 mV. This value could be decreased slightly to provide a greater bias (>200 mV), and to meet the worst case power supply and resistor tolerance conditions. However, the value of Ra and Rd should not be reduced too low in order to minimize loading seen by the driver. This example illustrated that the largest values used for the pull up (Ra) and pull down (Rd) resistors should be 750Ω. The pull resistors should not be decreased substantially. Because when the driver is active (ON), it is required to develop a minimum of 1.5V across the cable termination.

Using low impedance pull resistors further loads down the driver, making the 1.5V differential voltage even more difficult to meet.

Figure 6 illustrates the fully loaded (32 unit loads) TIA/EIA-485 bus with an external FAILSAFE bias network. Note that the FAILSAFE bias (Power Termination) is only located at one end of the bus. The other end employs a single resistor termination. The power termination is commonly located on the Master node of a Master/Slave bus configuration. This assures that the power to the pull up resistor is always on.

Before looking at the driver’s load, the receiver’s input impedance needs to be modeled to understand its effect upon the driver. The TIA/EIA-485 standard specifies a high receiver input impedance and an Input Voltage vs Input Current curve. An input impedance of 12 kΩ or greater is typically required to meet the Vx/Ix curve. A common mistake is to model the receiver’s input impedance as a differential resistance, which is seen between the input pins. The input resistance is correctly modeled as a series resistor to a voltage reference node (AC ground point). The TIA/EIA-485 standard also allows for 32 unit loads to be connected in parallel. Therefore, the driver could see 32 12 kΩ resistors in parallel on each line. This is equivalent to a 375Ω resistor to an internal voltage reference point.
The test circuit shown in Figure 7 models the fully loaded TIA/EIA-485 bus. The 375Ω resistors that model the 32 parallel receiver input impedances, have been changed to 330Ω for two reasons. First, an active driver would also see 31 tri-stated driver leakage currents (I_{OZ}), which is equivalent to 31 times 100 µA or 3.1 mA. This is equivalent to roughly 3 more unit loads. Therefore, 12 kΩ divided by 35(32 + 3) equals 342Ω. This value is further reduced to 330Ω to select standard value resistors. The dashed box represents 32 receiver loads and 31 passive driver leakage loads. The V_{CM}

power supply models the maximum ground shifting specified (allowed) by TIA/EIA-485 (±7V). The differential voltage (VOD), measured across the 62Ω load (120Ω/130Ω), is required to be greater than 1.5V in magnitude by TIA/EIA-485. Test data taken on three popular National TIA/EIA-485 drivers are shown in Table I. With the common mode voltage varied from −7V to +7V, all of the devices meet the 1.5V minimum differential voltage (VOD column).
<table>
<thead>
<tr>
<th>Device</th>
<th>(V_{CM}) (V)</th>
<th>(I_-) (mA)</th>
<th>(I_+) (mA)</th>
<th>(V_-) (V)</th>
<th>(V_+) (V)</th>
<th>(VOD) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS3695</td>
<td>0</td>
<td>-41.7</td>
<td>+38.4</td>
<td>3.39</td>
<td>1.44</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>-56.1</td>
<td>+23.5</td>
<td>3.18</td>
<td>1.24</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td>+7</td>
<td>-13.4</td>
<td>+69.1</td>
<td>3.78</td>
<td>1.77</td>
<td>2.01</td>
</tr>
<tr>
<td>DS96172/4</td>
<td>0</td>
<td>-43.4</td>
<td>+42.4</td>
<td>3.25</td>
<td>1.14</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>-59.6</td>
<td>+28.0</td>
<td>3.08</td>
<td>0.94</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>+7</td>
<td>-12.0</td>
<td>+70.4</td>
<td>3.47</td>
<td>1.46</td>
<td>2.01</td>
</tr>
<tr>
<td>DS96F172/4</td>
<td>0</td>
<td>-49.5</td>
<td>+45.3</td>
<td>3.67</td>
<td>1.33</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>-63.5</td>
<td>+30.6</td>
<td>3.47</td>
<td>1.14</td>
<td>2.33</td>
</tr>
<tr>
<td></td>
<td>+7</td>
<td>-19.2</td>
<td>+74.2</td>
<td>4.00</td>
<td>1.71</td>
<td>2.29</td>
</tr>
</tbody>
</table>

Note 1: Current into device pin is defined as positive, current out of device pin is defined as negative. \(VOD \geq 1.5V \) (TIA/EIA-485).

OPEN INPUT FAILSAFE FEATURE

All of National’s TIA/EIA-485 receivers support the OPEN INPUT FAILSAFE feature. This feature provides a known state (HIGH) on the receiver output for the following cases, which are illustrated in Figure 8. The OPEN INPUT FAILSAFE feature is integrated into the input stage of the device. Normally high value (typically 120 kΩ) bias resistors pull the plus input high, and the minus input low. The value is large enough to properly bias the receiver when the inputs are open (non-terminated).

VALID OPEN INPUT CASES:

A. Uterminated Cables—With restrictions on data rate, stub length, and cable length, it is possible to construct an interface without termination resistors. Normally the cable length is very short with respect to the driver’s rise time and the reflections that occur die out long before the next transition. For the idle line, the impedance seen across the receiver input pins is very large (open) and thus the receiver output will be a HIGH state.

B. Unconnected Nodes—In a Multi-Point configuration, up to 32 nodes can be connected to the twisted pair. Termination should only be located at the two extreme ends of the cable. Therefore, if a middle node is disconnected from the cable, the OPEN INPUT FAILSAFE feature will put the receiver output into a stable HIGH state.

C. Unused Channels—If a high integration receiver IC (multi-channel) is being used, and all channels are not required, the unused channel(s) inputs can be left as no-connects. The OPEN INPUT FAILSAFE feature will force the unused channel into a stable HIGH state. This prevents the unused channel picking up external noise and oscillating, thereby increasing the power supply current (I_{cc}).

In all three cases, the impedance seen across the receiver input pins is very large or open, \((\infty)\) in contrast to a low impedance termination resistor of 150Ω or less. For these cases the receiver output will be HIGH. If the termination resistors were connected across the receiver input pins, then the receiver output is undetermined, unless the bus employs FAILSAFE biasing resistors.

SUMMARY

External FAILSAFE bias resistors can be used to solve the idle line state problem that commonly occurs in Multi-Point applications using asynchronous protocols. This is a well accepted hardware approach to solving the idle line state problem. In fact many complete INTERFACE standards have accepted this method. Examples include the Differential SCSI-1 and 2 (Small Computer System Interface) specifications, as well as the IPI (Intelligent Peripheral Interface) standard. This application note provides guidance to selecting properistor values that will provide an adequate FAILSAFE bias (V_{f}{\text{s}}b) while minimizing the loading effect on the driver.

FIGURE 8. Applications of OPEN INPUT FAILSAFE Feature

![Figure 8](image-url)
APPENDIX

A more elaborate calculation that takes into account the DC resistance of the twisted pair cable is provided in this appendix. (See Figure 9). For this example assume the following:

- \(R_a \) = Pull Up Resistor
- \(R_b \) = Slave End Cable Termination Resistor
- \(R_c \) = Master End Cable Termination Resistor
- \(R_d \) = Pull Down Resistor
- \(R_t \) = Cable DC Resistance
- \(R_{dcr} \) = \(R_e + R_f \)
- \(V_{fsbm} \) = FAILSAFE Bias Potential @ Master end of cable
- \(V_{fsbs} \) = FAILSAFE Bias Potential @ Slave end of cable

and

1. \(R_a = R_d \) for symmetrical loading
2. \(\text{REQ} = \frac{R_c((R_a + R_d))}{(R_a + R_c + R_d)} \)

Note 2: Assume \(V_{CC} = 5V \pm 5\% \).

Note 3: Resistor Tolerance = \(\pm 2\% \).

Note 4: Worst Case occurs at \(V_{CC} \) – 5\%, \(R_a \) and \(R_d \) + 2\%, \(R_b \) and \(R_c \) – 2\%.

The FAILSAFE Bias at the Slave end is simply a voltage divider between the cable DC resistance and the Slave end termination resistor.

\[V_{fsbs} = \frac{R_b}{R_b + R_{dcr}} V_{fsbm} \]

REFERENCES

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and applications. TI products are neither designed nor intended for such use. Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designated nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designated nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

- **Products**
 - Audio: www.ti.com/audio
 - Amplifiers: amplifier.ti.com
 - Data Converters: dataconverter.ti.com
 - DLP® Products: www.dlp.com
 - DSP: dsp.ti.com
 - Clocks and Timers: www.ti.com/clocks
 - Interface: interface.ti.com
 - Logic: logic.ti.com
 - Power Mgmt: power.ti.com
 - Microcontrollers: microcontroller.ti.com
 - RFID: www.ti-rfid.com
 - OMAP Mobile Processors: www.ti.com/omap
 - Wireless Connectivity: www.ti.com/wirelessconnectivity

- **Applications**
 - Communications and Telecom: www.ti.com/communications
 - Energy and Lighting: www.ti.com/energy
 - Industrial: www.ti.com/industrial
 - Medical: www.ti.com/medical
 - Transportation and Automotive: www.ti.com/automotive
 - Video and Imaging: www.ti.com/video

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated