Application Note 1111 An Introduction to IBIS (I/O Buffer Information Specification) Modeling

Literature Number: SNLA046
An Introduction to IBIS (I/O Buffer Information Specification) Modeling

INTRODUCTION

With time to market becoming shorter and shorter, system designers are struggling to release a product from concept to reality in a tightly budgeted time. The need to simulate before prototyping is very essential and the ability to simulate and simulate accurately has heightened even more. But in order to simulate a system level board, all components on the board need to be modeled. Unfortunately many device models are not readily available from vendors. IBIS (I/O Buffer Information Specification) is a Behavioral Modeling Specification that is gaining world wide popularity as a standard format to generate device models. IBIS solves many of the problems that prevented system designers from obtaining semiconductor vendor’s SPICE models.

This application note discusses various aspects of IBIS including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/output structures and future trends.

ABOUT IBIS...

I/O Buffer Information Specification is a fast and accurate behavioral method of modeling input/output buffers based on V/I curve data derived from measurement or full circuit simulation. It uses a standardized software parsable format in the form of an ASCII file to store the Behavioral Information needed to model device characteristics of integrated circuits. IBIS can be used by almost any Simulators/EDA tools in the industry. A wide range of Industry leaders support the IBIS open forum. Below is a partial list of vendors supporting the IBIS industry. A wide range of Industry leaders support the IBIS forum including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/output structures and future trends.

IBIS can be used by almost any Simulators/EDA tools in the industry. A wide range of Industry leaders support the IBIS open forum. Below is a partial list of vendors supporting the IBIS forum: Viewlogic Systems www.viewlogic.com (XTK/TLC)
HyperLynx www.hyperlynx.com (LineSimPRO)
Incases www.pad.incases.com (INSIDE, EXLIN)
IntuSoft www.intusoft.com (IS_SPICE)
Mentor Graphics www.mentor.com (IS)
Quantic EMC Inc www.quantic-emc.com (Greenfield)
Veribest www.veribest.com
Viewlogic Systems www.viewlogic.com (XTK/TLC)
Zuken-Redac

ADVANTAGES OF IBIS

IBIS solves many of the problems that prevented system designers from obtaining semiconductor vendor’s SPICE models. IBIS is backwards compatible. So all models created today using the present version of the specification are guaranteed to work with future versions of IBIS. The IBIS forum is continuously defining new and improved ways of modeling complex and unique I/O structures.

IBIS is backwards compatible. So all models created today using the present version of the specification are guaranteed to work with future versions of IBIS. The IBIS forum is continuously defining new and improved ways of modeling complex and unique I/O structures.

HISTORY OF IBIS

The originator of IBIS was Intel. Presently the standard is being driven by the IBIS forum with over 35 members consisting of EDA vendors, Computer manufacturers, Semiconductor vendors and Universities.

IBISv1.0 was released in April 1993. IBISv1.0 is capable of modeling standard TTL or CMOS type of I/O structure. In June 1993 at the DAC (Design Automation Conference) show in Dallas, IBISv1.1 was released. The major changes were the addition of comments to the original specification.

IBISv2.0 was ratified in June 1994 at the DAC conference in San Diego. IBISv2.0 is a considerable improvement over IBISv1.1. Some of the added features are, Multiple rail support (ex. V+ and V− supply for RS-232), ECL, Terminator models, Open drain, Open collector, Differential I/O, Controlled slew rate and Definitions of complex package parameters to name a few.

IBISv2.1 added more comments to clarify v2.0 and has been ratified December 1994. Today IBIS is an approved standard within EIA (Electronic Industry Alliance) and is also known under ANSI/EIA-656.

IBISv3.0 has been ratified at DAC97. The committee is in the process of finalizing the development of the v3.0 parser. IBISv3.0 has various advanced features. Some of the added features are Driver selection, Diode stored charge, Package Model extension, Electrical board description, Multi-stage Drivers, Series elements and more. IBISv3.1 improves upon clarification issues with v3.0.

The EIG (Electronic Information Group) within EIA has been actively working towards making IBIS part of the IEC (European standard). IBIS has been accepted as IEC-62014-1 (Sep’97) at the Tokyo International Standards meeting.

The software parser (known as the “Golden Parser”) validates the IBIS model file. The Golden Parser checks the syntax of the IBIS model file to confirm that the data format meets the IBIS specification. The object code of the parser is available for free from the forum. Simulator vendors may also purchase the source code for a fee.

IBIS is backwards compatible. So all models created today using the present version of the specification are guaranteed to work with future versions of IBIS. The IBIS forum is continuously defining new and improved ways of modeling complex and unique I/O structures.
Following is a behavioral block diagram of IBIS (Figure 1) and the pieces needed to create an Input and an Output model.

INPUT STRUCTURE MODEL
Information needed to model the Input Structure is shown in Figure 2. C_pkg, R_pkg and L_pkg are the package parameters. Power_Clamp and GND_Clamp defines the ESD structures on the Inputs. The V/I curve data defines these clamp structures. C_comp is the input capacitance of the input pin.

OUTPUT STRUCTURE MODEL
Information needed to model the output structure is shown in Figure 3. Pullup defines V_OH/I_OH, Pulldown defines the V_OL/I_OL and Ramp defines the dV/dT of the Rising and Falling waveforms.

FIGURE 1. Behavioral Diagram of IBIS

FIGURE 2. Input/Enable Structure Model

FIGURE 3. Output Structure Model
The Pullup and Pulldown data are created from the V/I curves. The remaining parameters are similar to the Input structure except that they define the package parasitic of the output pin as well as the output capacitance of the output pin.

The Pullup and Power_Clamp data are “V CC relative”, meaning that the voltage values are referenced to V CC and not ground. So the voltages in the tables are derived from the equation: Vtable = V CC −V output. V CC relative data is necessary for the simulator as the Pullup structure depends on the voltage between the output and V CC and not the voltage between the output and ground pin.

An Interconnect engineer can create a slow and a fast model using IBIS. The slow model is useful to determine flight time and the fast model is useful to analyze overshoot, undershoot, crosstalk, etc. By combining min IOH /I OL with max ramp time and max package parameters, a slow model is generated. To create a fast model, the max IOH /I OL, min ramp and minimum package information is used.

MODEL GENERATION FLOW

The following steps are used in generating an IBIS model. All necessary V/I and other parameters need to be either measured on the bench, obtained from simulation or provided by the semiconductor vendor. (Step 1)

1. Bench Measurements
2. Simulation
3. Golden Parser
4. Validate Model on Simulator of Choice

MODEL VALIDATION ON SIMULATOR

Model validation is the final and critical step to IBIS modeling. Visual inspection, s2iplt checks, parser test, simulation of model under known loads, comparison of simulation data to bench/SPICE, edge rate and signal swing level verification are also done during this phase. National’s Interface Products Group validates the IBIS models on two different IBIS complaint simulators.

IBIS models are primarily used for SI (Signal Integrity) Analysis. These are typically crosstalk, ringing, overshoot, undershoot, mismatched impedance, reflections, line termination analysis, topology scheme analysis, design rule generation and multi-board simulation.

IBIS is best suited for SI analysis on system boards requiring very little run time (25X faster than SPICE).

![Graphical representation of the model generation flow](image)
FUTURE TRENDS OF IBIS
Since its formation in 1993, IBIS has improved its specification by many folds. More complex modeling features and possibly timing analysis may be added to future IBIS specifications. DIE (Die Information Exchange) forum which specifies DIE information for MCM applications references IBIS as the Signal Integrity Analysis specification. FMF (Free Model Forum), OMF (Open Model Forum), CFI (CAD Framework Initiative) are some of the other forums that reference IBIS for behavioral modeling.
EIAJ III (I/O Interface model for Ics) is another organization working on generating an I/O spec based on IBIS but with added SPICE syntax’s.
IEC 93/67/NP (IBIS and EMC simulation) is a task force assigned to investigate the use of IBIS models for EMC simulation.
IBIS is also working with the JC-16B committee to define SSTL and HSTL technology modeling using IBIS.

NATIONAL AND IBIS
National’s various product lines are generating IBIS models today. Interface Applications actively participates in IBIS forum meetings and was very instrumental in adding the Differential I/O specification to IBISv2.1.

CONCLUSION
IBIS modeling is accurate, easy to create and compatible on a wide range of Simulation platforms. It solves the “NO MODELS AVAILABLE” problem in the industry. IBIS has created a common Industry format for modeling using Behavioral information and does not disclose any proprietary process parameters or circuit design details.

LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such safety-critical applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Copyright © 2011, Texas Instruments Incorporated