AN-350 Designing an LCD Dot Matrix Display Interface

Literature Number: SNLA135
The MM58201 is a CMOS LCD driver capable of driving a multiplexed display of up to 192 segments (24 segment columns by 8 backplanes). The number of backplanes being driven is programmable from one to eight. Data to be displayed is sent to the chip serially and stored in an internal RAM. An external resistor and capacitor control the frequency of the driving signals to the LCD. The MM58201 can also be programmed to accept the oscillator output and backplane signals of another MM58201 for cascading purposes. The displayed data may also be read serially from the on-chip RAM. A simplified functional block diagram of the MM58201 is shown in Figure 1.

FIGURE 1. MM58201 Functional Diagram
BACKGROUND

LCD displays have become very popular because of their ultra-low power consumption and high contrast ratio under high ambient light levels. Typically an LCD has a backplane that overlaps the entire display area and multiple segment lines that each overlap just one segment or descriptor. This means that a separate external connection is needed for every segment or descriptor as shown in Figure 2. For a display with many segments such as a dot matrix display, the number of external connections could easily grow to be very large.

Unlike other display technologies that respond to peak or average voltage and current, LCDs are sensitive to the rms voltage between the backplane and given segment location. Also, any DC bias across this junction would cause an irreversible electrochemical action that would shorten the life of the display. A typical LCD driving signal is shown in Figure 3. The backplane signal is simply a symmetrical square wave. The individual segment outputs are also square waves, either in phase with the backplane for an “off” segment or out of phase for an “on” segment. This causes a Vrms of zero for an “off” segment and a Vrms of +V for an “on” segment.

One way to reduce the number of external connections is to multiplex the display. An example of this could be an LCD with its segments arranged as intersections of an X-Y grid. A driver to control a matrix like this would be fairly straightforward for an LED display. However, it is more complex for an LCD because of the DC bias restriction.

A multiplexed LCD driver must generate a complex set of output signals to insure that an “on” segment sees an rms voltage greater than the display’s turn-on voltage and that an “off” segment sees an rms voltage less than the display’s turn-off voltage. The driver must also insure that there is no DC bias.

One pattern that can accomplish this is shown as an example in Figure 4. This is the pattern that the MM58201 uses. The actual Vrms of an “on” segment and an “off” segment is shown in Figure 5. If there are eight backplanes, the Vrms (ON) = 0.2039 × VTC and the Vrms (OFF) = 0.2029 × VTC. It can be seen in Figure 6 that as the number of backplanes increases, the difference between Vrms (ON) and Vrms (OFF) becomes less. Refer to the specifications of the LCD to determine exactly what Vrms is required.

![FIGURE 2. Typical LCD Pin Connections](TL/B/5606-2)

![FIGURE 3. Drive Signals from a Direct Connect LCD Driver](TL/B/5606-3)

![FIGURE 4. Example of Backplane and Segment Patterns](TL/B/5606-4)
a. Analysis of Vrms (ON)

\[
V_{\text{rms (ON)}} = \left(\frac{1}{T} \int_0^T v(t)^2 \, dt \right)^{1/2}
\]

\[
= \left(\frac{1}{N} \int_0^N (0.68 V_{TC})^2 + \int_1^N (-0.18 V_{TC})^2 \right)^{1/2}
\]

\[
= \left(\frac{1}{N} V_{TC}^2 [0.4624 + 0.0324(N - 1)] \right)^{1/2}
\]

\[
= V_{TC} \sqrt{\frac{0.4624 + 0.0324(N - 1)}{N}}
\]

N = number of backplanes

b. Analysis of Vrms (OFF)

\[
V_{\text{rms (OFF)}} = \left(\frac{1}{T} \int_0^T v(t)^2 \, dt \right)^{1/2}
\]

\[
= \left(\frac{1}{N} \int_0^N (0.32 V_{TC})^2 + \int_1^N (-0.18 V_{TC})^2 \right)^{1/2}
\]

\[
= \left(\frac{1}{N} V_{TC}^2 [0.1024 + 0.0324(N - 1)] \right)^{1/2}
\]

\[
= V_{TC} \sqrt{\frac{0.1024 + 0.0324(N - 1)}{N}}
\]

N = number of backplanes

Example: If \(N = 8 \) and \(V_{\text{rms (OFF)}} = 1.8V \) and \(V_{\text{rms (ON)}} = 2.2V \) then \(V_{TC} = 7.5V \)
FUNCTIONAL DESCRIPTION

Connecting an MM58201 to an LCD

The backplane and segment outputs of the MM58201 connect directly to the backplane and segment lines of the LCD. These outputs are designed to drive a display with a total “on” capacitance of up to 2000 pF. This is especially important for the backplane outputs, as it is usually the backplanes that have the most capacitance. As the capacitance of the output lines increases, the DC offset between a backplane and segment signal may increase. Most LCD displays specify that a maximum offset of 50 mV is acceptable. For backplane capacitance under 2000 pF the MM58201 guarantees an offset of less than 10 mV.

If the LCD display to be used has 24 segments per backplane or less, then each MM58201 should be configured as a “master” so that each one will generate its own set of backplane signals. However, if the LCD display has more than 24 segments per backplane, more than one MM58201 will be needed for each backplane. To synchronize the driving signals there must be one “master” chip and then an additional “slave” chip for every 24 segments after the first 24. When a chip is configured as a “slave” it does not generate its own backplane signals. It simply synchronizes itself to the backplane signals generated by a “master” chip by sensing the BP1 signal. An example of both an all “master” configuration and a “master-slave” configuration will be shown later.

Voltage Control Pin and Circuitry

The voltage presented at the VTC pin determines the actual voltage that is output on the backplane and segment lines. These voltages are shown in Figure 7. VTC should be set with respect to Vrms (ON) and Vrms (OFF) and can be calculated as shown in Figure 5.

Since the input impedance of VTC may vary between 10 kΩ and 30 kΩ, the output impedance of the voltage reference at VTC should be relatively low. One example of a VTC driver is shown in Figure 8. To put the MM58201 in a standby mode, bring VTC to VSS (ground). This will blank out the display and reduce the supply current to less than 300 μA.

RC Oscillator

This oscillator works with an external resistor tied to VDD and an external capacitor tied to VSS. The frequency of oscillation is related to the external R and C by:

$$f_{osc} = \frac{1}{1.25 \times RC} \times 400N$$

The value of the external resistor should be in the range from 10 kΩ to 1 MΩ. The value of the external capacitor should be less than 0.005 μF.

The oscillator generates the timing required for multiplexing the LCD. The frequency of the oscillator is 4N times the refresh rate of the display, where N is the number of backplanes programmed. Since the refresh rate should be in the range from 32 Hz to 100 Hz, the oscillator frequency should be:

$$128N < f_{osc} < 400N$$

If the frequency is too slow, there will be a noticeable flicker in the display. If the frequency is too fast, there will be a loss of contrast between segments and an increase in power consumption.

Serial Input and Output

Data is sent to the MM58201 serially through the DATA IN pin. Each transmission must consist of 30 bits of information, as shown in Figure 9. The first five bits are the address, MSB first, of the first column of LCD segments that are to be changed. The next bit is a read or write flag. The following 24 bits are the actual data to be displayed.

The address specifies the first LCD column that is going to be affected. The columns are numbered as shown in Figure 10. Data is always written in three column chunks. Twenty-four bits of data must always be sent, even if some of the backplanes are not in use. The starting column can be any number between one (00000) and twenty-four (10111). If column 23 or 24 is specified the displayed data will wrap around to column 1.

If the R/W bit is a “0” then the specified columns of the LCD will be overwritten with the new data. If the bit is a “1” then the data displayed in the specified columns will be available serially at the DATA OUT pin and the display will not be changed.
FIGURE 9. Transmission of Data

Diagram above shows where data will appear on display if starting address 01100 is specified in data format.

FIGURE 10. Address of Particular Segment Columns

The data is formatted as shown in Figure 10. The first bit in the data stream corresponds to backplane 1 in the first specified column. The second bit corresponds to backplane 2 in the first specified column and so on.

During initialization each MM58201 must be programmed to select how many backplanes are to be used, and whether the chip is to be a “master” or a “slave”. The format of this transmission is just like a regular data transmission except for the following: the address must be 11000; the R/W must be a write (0); the first three data bits must be selected from the list in Table I. The next bit should be a “1” for the chip to be a master or a “0” for the chip to be a slave. The following 20 bits are necessary to complete the transmission but they will be ignored. The mode cannot be read back from the chip.

TABLE I. Backplane Select

<table>
<thead>
<tr>
<th>Number of Backplanes</th>
<th>B2</th>
<th>B1</th>
<th>B0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The timing of the CLK, CS, DATA IN, and DATA OUT are illustrated in Figure 11. The frequency of the clock can be between DC and 100 kHz with the shortest half-period being 5.0 μs. A transmission is initiated by CS going low. CS can then be raised anytime after the rising edge of the first clock pulse and before the rising edge of the last clock pulse (the clock edge that reads in D24). 30 bits of information must always be sent.

The data at DATA IN is latched on each rising edge of the clock pulse. The data at DATA OUT is valid after each falling edge of the last 24 clock pulses.

It is important to note that during a read or write transmission the LCD will display random bits. Thus the transmissions should be kept as short as possible to avoid disrupting the pattern viewed on the display. A recommended frequency is:

\[f_{\text{OSC}} = \frac{30}{(t_{\text{LCD}} + 7 t_{\text{S}})} \]

\[t_{\text{S}} \approx \text{time between each successive transmission}. \]

This should produce a flicker-free display.

The DATA OUT pin is an open drain N-channel device to VSSG. This output must be tied to VDD through a resistor if it is to be used. It could also be tied to a lower voltage if this output is to be interfaced to logic running at a lower voltage. The value of the resistor is calculated by:

\[R = \left(\frac{V_{\text{SSG}} - 0.4}{0.0006} \right) \]

\[V_{\text{SSG}} \] voltage of lower voltage logic

Power Supply

VDD can range between 7V and 18V. A voltage should be used that is greater than or equal to the voltage that you calculate for VTC as shown in Figure 5.
TYPICAL APPLICATIONS
One application of the MM58201 is a general purpose display to show graphic symbols and text. This type of display could be used in an electronic toy or a small portable computer or calculator. One such display is shown in Figure 12. This display consists of four separate LCD displays that are built into one housing. Each separate LCD display has 8 backplanes and 24 segment lines. The entire display will require four MM58201s to control it.

The circuit diagram of this application is shown in Figure 14. Each separate LCD display is driven by one MM58201. The backplanes are driven by the separate MM58201s and are not paralleled together. There are three common lines: CLK, DATA IN, and DATA OUT. The CLK and DATA IN are generated from an output port such as an INS8255. Four other bits of the output port generate a linear select with a different bit going to each MM58201 chip select as shown in Figure 13. DATA OUT is sent to one bit of an input port.

The VTC driver is as described beforehand. The MM74C906 is an open drain CMOS buffer that has near regular TTL compatible inputs. This is to provide level translation from the 5V supply of the computer system to the 12V supply of the MM58201.

If I/O ports are not available, the circuit in Figure 15 could be used as an interface between the MM58201s and a microprocessor bus.

To reduce the number of connections between the circuit and the LCD, all of the backplanes could have been driven by one MM58201 as shown in Figure 16. The other MM58201s would be configured as "slaves" synchronized to the one “master” MM58201. This would save 24 connections to the LCD but would increase the capacitance of the backplanes. In this application the capacitance is not a problem with either setup.
FIGURE 14. Diagram of Application

FIGURE 15. Input and Output Ports for Interface
SOFTWARE
The real heart of this system is the software which consists of four parts. Part one is the initialization portion. This sets up the MM58201s as "masters" and programs them for 8 backplanes. It then sets up the needed pointers for the other subroutines which consist of:
1) GRAPH: displays pattern on LCD.
2) TEXT: prints ASCII characters on display.
3) SCROLL: scrolls whatever pattern is displayed to the right until LCD is cleared.
This application used an NSC800™ with 8080 mnemonics. It could easily be adapted for other microprocessors.

MAIN
This program initializes the MM58201s. It controls the sequence of display output by calling other programs.
It first sends out a "dummy" transmission to make sure that the chips are ready to respond to a valid transmission. It then programs the chips to be "masters" and to use eight backplanes.
After initialization, this program sets up the correct pointers to display a graphic symbol. First it displays the upper eight bits of it, then it displays the lower eight bits.
The words "TESTING MM58201" are then displayed. A call to scroll then causes this to scroll to the right until the screen is blank. Finally the words "END OF TEST" appear and the program ends.
The method to create a custom graphic symbol will be demonstrated in the next section.
;INITIALIZE THE STACK POINTER
LXI SP,1FFFH

;INITIALIZE THE 810
;SET MODE 0 FOR PORT A
;INIT: MVI A,00H
OUT 27H

;SET PORT A AS OUTPUT AND PORT C AS INPUT
MVI A,0FFH
OUT 24H ;PORT A DDR
MVI A,00H
OUT 26H ;PORT B DDR

;INITIALIZE THE FOUR 58201'S
MVI A,0 ;SET FOR WRITE MODE
STA MODE
LXI H,MASTER, ;SEND A COMPLETE TRANSMISSION TO CLEAR OUT
MVI E,11000B ; ANY OLD CHIP SELECT.
MVI D,00001110B
CALL WRITE
LXI H,MASTER ;CONFIGURE CHIPS 0, 1, 2, AND 3 AS MASTERS
MVI D,00001101B
CALL WRITE
LXI H,MASTER
MVI D,00001011B
CALL WRITE
LXI H,MASTER
MVI D,00000111B
CALL WRITE

;SET UP POINTER AND COUNTERS TO DISPLAY NATIONAL SEMI SYMBOL
MVI B,21 ;B HOLDS # OF COLUMNS TO CHANGE
RESTRT: MVI D,0 ;D HOLDS THE STARTING COLUMN NUMBER FOR UPPER HALF
MVI E,48 ;E HOLDS STARTING COLUMN NUMBER FOR LOWER HALF
DSLOOP: MOV C,D
LXI H,NATSM1 ;DISPLAY UPPER HALF OF GRAPHIC
CALL GRAPH
LXI H,NATSM2 ;DISPLAY LOWER HALF OF GRAPHIC
MOV C,E
CALL GRAPH
LXI H,0FFFFH ;PAUSE
PAUSE: DCX H
MOV A,H
ORA L
JNZ PAUSE

;DISPLAY IT UNTIL COLUMN COUNT IS 30
CMP D
JNZ DSLOOP

LXI H,TEXT1 ;PRINT FIRST TEXT
MVI A,0 ;ZERO THE CURSOR
STA CURSOR
CALL TEXT

LXI H,TEXT2 ;PRINT SECOND TEXT
MVI A,0 ;ZERO THE CURSOR
STA CURSOR
CALL TEXT

LXI H,0FFFFH ;PAUSE

PAUSE1: DCX H
MOV A,H
ORA L
JNZ PAUSE1

JNZ PAUSE1

JNZ PAUSE1
This subroutine is the center of the software. It is the interface between the calling programs and the hardware. All I/O is generated by this subroutine.

There are two entrances to this subroutine: graph and read. Graph is the entrance used to display new data. Read is the entrance used to read data from the display.

The HL register should point to the beginning of the data to be displayed. The B register should hold the number of columns to change. This must be a multiple of three. The C register should hold the column number to start with. This must also be a multiple of three. These restrictions are to simplify the software.

The first operation is the calculation of the correct chip to enable and the column number to start within that chip. The first bit of the column address is output with the correct chip select going low. The rest of the column address is then output with all the chip selects high. If the operation is a write, the data is sent to the display bit by bit. If the operation is a read, the data is read in bit by bit.

To create a custom graphic symbol, draw it on a grid as shown in Figure 17. Group the upper eight squares as a byte with the least significant bit at the top, counting a dark square as a one. Group the lower eight squares as a byte with the most significant bit at the bottom. Use this generated data as input lists to the graph subroutine. A good example of this is shown in the listing of main when it calls graph.

Pad the data at the end with zeros as shown to keep the number of data values a multiple of three. Remember, this is only a software restriction. A different routine could be used that would allow any number of columns to be displayed.

![Figure 17. Example Graphic Symbol](image)
PUBLIC GRAPH, READ, WRITE, MODE

;GRAPHIC DISPLAY DRIVER
; INPUT: HL - POINTS TO START OF DATA
; B - # OF 8 BIT COLUMNS TO CHANGE (MUST BE MULT. OF 3)
; C - COLUMN # TO START WITH (MUST BE MULT. OF 3)
; OUTPUT: NO REGISTERS DISTURBED
; DATA POINTED TO IS DISPLAYED ON LCD DISPLAY.
; COLUMNS NOT SPECIFIED ARE NOT AFFECTED.

READ:
;SAVE ALL STATES
PUSH PSW
PUSH B
PUSH D
PUSH H
;FLAG FOR A READ OPERATION
MVI A,11000000B
STA MODE
JMP GRAPH1

GRAPH:
;SAVE ALL STATES
PUSH PSW
PUSH B
PUSH D
PUSH H
;FLAG FOR A WRITE OPERATION
MVI A,0
STA MODE
;CALCULATE WHICH 58201 TO ACCESS
GRAPH1: MVI D,0EEH ;START WITH CS1
ACC: MOV A,C
SUI 24 ;SUBTRACT 24 FROM COLUMN COUNT
JC GO ;IF CARRY IS SET THE CORRECT CHIP IS SELECTED
MOV C,A ;REG C GETS NEW COLUMN NUMBER
MOV A,D
RLC ;INCREMENT THE CS TO NEXT CHIP
MOV D,A
JMP ACC
;MAIN LOOP
GO: MOV E,C ;GET COLUMN NUMBER
M.LOOP: CALL WRITE ;DRAW 3 COLUMNS
DCR B ;SUBTRACT 3 FROM COLUMN COUNT
DCR B
DCR B
JZ END.G ;IF DONE, JUMP.
MOV A,E
ADI 3 ;ADD 3 TO ADDRESS
ADI 3
CPI 110000B ;IF ADDRESS NOT MAX THEN SKIP THIS
JNZ SKIP1
MOV A,D
RLC ;SELECT NEXT 58201 CS
MOV D,A
MVI A,0
SKIP1: MOV E,A ;SAVE NEXT ADDRESS
JMP M.LOOP ;LOOP UNTIL DONE

END.G: POP H ;RESTORE ALL STATES
POP D
POP B
POP PSW
RET

WRITE:
; DISPLAY 3 COLUMNS OF DATA
; INPUT: HL - POINTS TO START OF DATA
; E - ADDRESS
; D - OUTPUT CS
; OUTPUT: HL -= HL + 3
;SAVE ALL STATES
PUSH PSW
PUSH B
PUSH D

START: MVI A,00001111B ;ISOLATE CS IN REG D
ARA D
MOV D,A
MOV A,E
MOV A,E
;GET ADDRESS BITS AT HIGH END OF BYTE
RLC
RLC
RLC
MOV E,A
;OUTPUT FIVE ADDRESS BITS WITH CHIP SELECT
MOV C,5
W.LOOP: MOV A,E
RCL
MOV E, A
MOV A,10000000B
ANA E
ORA D
CALL DISPLY
DCR C
JNZ W.LOOP

;SIGNAL FOR A READ OR WRITE
LDA MODE
ORI 00001111B
CALL DISPLY
JF DIS0

;READ THE DATA
MOV B,3
READ1: MOV C,B
MVI D,0
READ2: IN 22H
ANI 00000001B
ORA D
RRC
MOV D,A
MVI A,00001111B
CALL DISPLY
DCR C
JNZ READ2
MOV M,D
INX H
DCR B
JNZ READ1

;RESTORE STATES
POP D
POP B
POP PSW
RET

;DISPLAY THE DATA
DIS0: MOV B,3
DIS1: MOV C,8
DIS2: MOV A,D
ROR
MOV D,A
ANI 10000000B
ORI 00001111B
CALL DISPLY
DCR C
JNZ DIS2
INX H
DCR B
JNZ DIS1

;RESTORE STATES
POP D
POP B
POP PSW
RET

;DISPLAY ROUTINE
; INPUT: A - DATA AND CHIP SELECT
; BIT 7 - DATA
; BITS 0-3 - CHIP SELECT
; OUTPUT: NO REGISTERS DISTURBED
; OUTPUT ONE BIT TO 58201
PUSH PSW
ANI 10000000B
OUT 20H
ORI 00000000B
OUT 20H
ANI 10011111B
OUT 20H
ANI 10000000B
OUT 20H
ANI 01011111B
OUT 20H
POP PSW
POP FSW
POP PSW
RET

MODE: DS 1
END
This subroutine will take the ASCII text pointed to by HL and display it on the LCD starting at the column pointed to by the memory location CURSOR. The data should end with a zero. CURSOR should be in the range of 0–15 as this is the extent of this LCD display. The first operation is the calculation of the offset into the ASCII table of the first character. Thirty-two is subtracted from the ASCII number because the table starts with a space character. This result is then multiplied by six because the data to be displayed is six bytes long. We now have the offset into the table. The character is displayed on the LCD. This operation is repeated until all the characters have been displayed.

A custom font can be generated using the same technique as that used to create a custom graphic symbol.
MULT:
;MULTIPLY BC REG BY SIX
; INPUT: BC = MULTIPLICAND
; OUTPUT: BC = BC * 6
; NO REGISTERS DISTURBED

PUSH PSW
PUSH B
MOV H,B
MOV L,C
DAD B
DAD B
DAD B
DAD B
MOV B,H
MOV C,L
POP H
POP PSW
RET

CURSOR: DS 1
ASCII: DB 0,0,0,0,0,0 ;SPACE
DB 0,95,95,0,0,0 ;!
DB 0,7,0,7,0,0 ;'
DB 20,127,20,127,20,0 ;#
DB 36,42,127,42,18,0 ;$
DB 35,19,8,100,98,0 ;%
DB 54,73,102,32,80,0 ;&
DB 0,0,7,0,0,0 ;'
DB 8,8,8,8,8,0 ;–
DB 0,96,96,0,0,0 ;,
DB 32,16,6,4,2,0 ;/
DB 62,81,73,69,82,0 ;0
DB 0,66,127,64,0,0 ;1
DB 20,127,20,127,20,0 ;2
DB 36,42,127,42,18,0 ;3
DB 35,19,8,100,98,0 ;4
DB 54,73,102,32,80,0 ;5
DB 0,0,7,0,0,0 ;'
DB 8,8,8,8,8,0 ;–
DB 0,96,96,0,0,0 ;,
DB 32,16,6,4,2,0 ;/
DB 62,81,73,69,82,0 ;0
DB 0,66,127,64,0,0 ;1
DB 20,127,20,127,20,0 ;2
DB 36,42,127,42,18,0 ;3
DB 35,19,8,100,98,0 ;4
DB 54,73,102,32,80,0 ;5
DB 122,73,73,73,70,0 ;6
DB 34,65,73,73,54,0 ;7
DB 15,8,126,8,0 ;8
DB 39,69,69,69,57,0 ;9
DB 62,73,73,73,49,0 ;A
DB 1,97,17,9,7,0 ;B
DB 54,73,73,73,54,0 ;C
DB 8,9,9,9,126,0 ;D
DB 0,54,54,0,0,0 ;E
DB 96,54,54,0,0,0 ;F
DB 8,20,34,65,0,0 ;G
DB 20,20,20,20,20,0 ;H
DB 65,34,20,8,0 ;I
DB 2,1,88,5,2,0 ;J
DB 62,65,53,89,78,0 ;K
DB 124,18,17,18,124,0 ;L
DB 127,73,73,73,54,0 ;M
DB 62,65,65,34,0 ;N
DB 127,65,65,34,0 ;O
DB 127,73,73,73,54,0 ;P
DB 127,73,73,73,54,0 ;Q
DB 127,9,1,1,0 ;R
DB 62,65,61,114,0 ;S
DB 127,8,8,127,0 ;T
DB 65,127,65,0 ;U
DB 32,64,64,64,63,0 ;V
DB 127,65,65,65,65,0 ;W
DB 127,65,65,65,65,0 ;X
DB 127,8,8,127,0 ;Y
DB 99,20,8,20,99,0 ;Z

END
This subroutine will scroll whatever is displayed on the LCD to the right until the screen is clear. It first reads in three columns of data. It then writes three columns of data with the HL pointer shifted by one byte. This will shift the displayed data by one column. This is repeated until the entire LCD has been shifted by one column. Then the entire operation is repeated until all the displayed data is shifted off the screen.

This subroutine could easily be adapted to scroll the display to the left if desired.

```
NB8080
PUBLIC SCROLL
EXTERN READ, GRAPH

SCROLL:
; SCROLLS DISPLAY TO THE RIGHT UNTIL CLEAR
; INPUT: NONE
; OUTPUT: NO REGISTERS ARE CHANGED
; SCREEN IS SCROLLED UNTIL CLEAR

; SAVE ALL STATES
PUSH PSW
PUSH B
PUSH D
PUSH H

; SET UP ALL THE POINTERS
MVI D,96 ; LOOP UNTIL SCREEN IS CLEAR (96 CYCLES)
REPEAT: MVI A,0 ; CLEAR FIRST BYTE IN BUFFER
          STA BUFFER
MVI B,3 ; READ 3 COLUMNS ALWAYS
MVI C,0 ; START WITH COLUMN ZERO

; READ THE DATA
L.READ: LXI H,BUFFER+1 ; SET HL TO POINT TO BUFFER+1
          CALL READ
LXI H,BUFFER ; SET HL TO SHIFT THE DATA
          CALL GRAPH ; REDRAW THE SHIFTED DATA

; MOVE LAST COLUMN OF LAST READ INTO FIRST COLUMN OF NEXT WRITE
LDA BUFFER+3
STA BUFFER

; UPDATE COUNTERS
MOV A,C ; INCREMENT COLUMN NUMBER
ACI 3
MOV C,A
CPI 96 ; CHECK IF DONE WITH ONE CYCLE
JNZ L.READ
DCR D ; DECREMENT LOOP COUNT
JNZ REPEAT ; LOOP UNTIL DONE WITH ALL CYCLES

; RESTORE STATES
POP H
POP D
POP B
POP PSW
RET

BUFFER: DS 4

END
```
OTHER APPLICATIONS

There are many different types of LCDs that can be controlled by the MM58201. Some of these are shown in Figure 18.

Up to 24 seven-segment digits can be controlled by one MM58201. The software to control a multiplexed seven-segment display is not too much different from that of the previous application. The software is simpler because only one MM58201 is needed instead of four. A logic diagram for a six-digit multiplexed seven-segment LCD display is shown in Figure 19 and the software to control it is in Listing 5.

Given a string of numbers to display, this subroutine simply looks up the data it needs from a look-up table and stores this data in a buffer. After every three digits, the subroutine sends this data to the MM58201 to be displayed. The digit backplanes are wired backward in groups of three to simplify the software. The subroutines that this subroutine uses are very similar to the equivalent subroutines in the LCD dot matrix application. Since there is only one MM58201, the software is simpler. There is no need to calculate which MM58201 chip select to enable.
FIGURE 19. Diagram of a Six-Digit Seven-Segment LCD Multiplexed Display
; INITIALIZE THE 810
MV A,0
OUT 27H
MVI A,0FFH
OUT 24H
LXI BC,TEST
MVI E,6
CALL NUMBER
RST 6

TEST: DB 1,2,3,4,5,6

; SUBROUTINE TO DISPLAY NUMERALS ON LCD DISPLAY
; INPUT BC–POINTS TO BCD DATA STRING
; E – LENGTH OF DATA STRING (MULTIPLE OF 3)
; OUTPUT – NO REGISTERS DISTURBED
; – DATA STRING IS DISPLAYED
;
; NUMBER: PUSH PSW ; SAVE STATES
PUSH H
PUSH D
PUSH B

DIG3: MVI D,3 ; LOOP FOR 3 DIGITS

LOOP: LDAX B
LXI H,TABLE ; CALCULATE ADDRESS INTO TABLE
ADD L
MVI A,00H
ADC H
MOV A,M ; GET OUTPUT DATA FROM TABLE
PUSH PSW
LXI H,DATA ; STORE INTO DATA BUFFER
MOV A,L
ADD D
MOV A,H
DCR L
POP PSW
MOV M,A
INX B ; INCREMENT POINTER TO DATA STRING
DCR E ; DECREMENT # OF DIGITS
DCR D ; DECREMENT 3 DIGIT COUNT
JNZ LOOP ; IF NOT THIRD DIGIT THEN LOOP BACK

LXI H,DATA
CALL WRITE ; DISPLAY THESE THREE DIGITS
MOV A,E ; CHECK FOR LAST DIGIT OF DATA STRING
ANA A
JNZ DIG3
POP H ; RESTORE STATES
POP D
POP B
POP PSW
RET

WRITE: ; DISPLAY 3 DIGITS
; INPUT HL–POINTS TO START OF DATA
; E – COLUMN ADDRESS
; OUTPUT – NO REGISTERS DISTURBED
;
PUSH PSW ; SAVE STATES
PUSH H
PUSH D
PUSH B

MOV A,E ; GET ADDRESS BITS AT HIGH END OF BYTE
RCL
RCL
MOV E,A
;OUTPUT FIVE ADDRESS BITS

MVI C,5

W.Loop: MOV A,E
RCL ;ROTATE ADDRESS
MOV E,A
MVI A,10000000B ;GET MSB & ENABLE CHIP SELECT BIT
ANA E
CALL OUT ;OUTPUT BIT WITH CHIP SELECT
DCR C
JNZ W.Loop ;LOOP UNTIL ADDRESS IS OUT

;SIGNAL FOR A WRITE
MVI A,00H
CALL OUT ;OUTPUT A ZERO BIT

;OUTPUT THE DATA
MVI B,3 ;3 BYTES OF DATA
DIS1: MVI C,B ;8 BITS PER BYTE
MOV D,M
DIS2: MOV A,D ;ROTATE DATA
RRC
MOV D,A
ANI 10000000B ;GET NEXT BIT
ORI 00000001B ;DISABLE CHIP SELECT
CALL OUT
DCR C
JNZ DIS2 ;LOOP UNTIL DONE WITH BYTE
INX H
DCR B
JNZ DIS1 ;LOOP UNTIL DONE WITH 3 BYTES

POP H ;RESTORE STATES
POP D
POP B
POP PSW
RET

OUT: ;SUBROUTINE TO OUTPUT ONE BIT TO THE MM58201
; INPUT A –DATA BIT IN MSB POSITION
; OUTPUT –NO REGISTERS DISTURBED
; –OUTPUT ONE BIT TO 58201
PUSH PSW
OUT 20H
ORI 01000000B ;CLOCK HIGH
OUT 20H
ANI 10111111B ;CLOCK LOW
OUT 20H
POP PSW
RET

DATA: DS 3
TABLE: DB 00111111B, 00000110B, 01011011B, 01001111B
DB 01100110B, 01101101B, 01111101B, 00000111B
DB 01111111B, 01101111B

END

SUMMARY
The MM58201 makes it easy to interface a multiplexed LCD display to a microprocessor. It is simply a matter of connecting the display and the microprocessor to the chip, choosing a value for VCT, then interfacing your program to use the subroutines listed here or similar ones. Multiplexed LCDs are the perfect way to cut down on display interconnections while still taking advantage of the LCD's low power consumption and high contrast ratio—and the MM58201 makes them easy to use.
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically covering such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated