ABSTRACT
This application report provides basic circuits of the Texas Instruments op amp collection.

Contents
1 Introduction .. 4
2 Basic Circuits ... 4
3 Signal Generation ... 15
4 Signal Processing ... 25

List of Figures
1 Inverting Amplifier .. 4
2 Non-Inverting Amplifier ... 4
3 Difference Amplifier .. 4
4 Inverting Summing Amplifier ... 5
5 Non-Inverting Summing Amplifier ... 5
6 Inverting Amplifier with High Input Impedance ... 5
7 Fast Inverting Amplifier with High Input Impedance .. 6
8 Non-Inverting AC Amplifier ... 6
9 Practical Differentiator ... 7
10 Integrator ... 7
11 Fast Integrator .. 8
12 Current to Voltage Converter ... 8
13 Circuit for Operating the LM101 Without a Negative Supply 9
14 Circuit for Generating the Second Positive Voltage ... 9
15 Neutralizing Input Capacitance to Optimize Response Time 9
16 Integrator with Bias Current Compensation ... 10
17 Voltage Comparator for Driving DTL or TTL Integrated Circuits 10
18 Threshold Detector for Photodiodes .. 11
19 Double-Ended Limit Detector ... 11
20 Multiple Aperture Window Discriminator .. 12
21 Offset Voltage Adjustment for Inverting Amplifiers Using Any Type of Feedback Element .. 13
22 Offset Voltage Adjustment for Non-Inverting Amplifiers Using Any Type of Feedback Element .. 13
23 Offset Voltage Adjustment for Voltage Followers ... 13
24 Offset Voltage Adjustment for Differential Amplifiers ... 14
25 Offset Voltage Adjustment for Inverting Amplifiers Using 10 kΩ Source Resistance or Less .. 14
26 Low Frequency Sine Wave Generator with Quadrature Output 15
27 High Frequency Sine Wave Generator with Quadrature Output 16
28 Free-Running Multivibrator ... 16
29 Wein Bridge Sine Wave Oscillator .. 17
30 Function Generator .. 17
<table>
<thead>
<tr>
<th>Page</th>
<th>Circuit Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Pulse Width Modulator</td>
<td>18</td>
</tr>
<tr>
<td>32</td>
<td>Bilateral Current Source</td>
<td>18</td>
</tr>
<tr>
<td>33</td>
<td>Bilateral Current Source</td>
<td>19</td>
</tr>
<tr>
<td>34</td>
<td>Wein Bridge Oscillator with FET Amplitude Stabilization</td>
<td>20</td>
</tr>
<tr>
<td>35</td>
<td>Low Power Supply for Integrated Circuit Testing</td>
<td>21</td>
</tr>
<tr>
<td>36</td>
<td>Positive Voltage Reference</td>
<td>22</td>
</tr>
<tr>
<td>37</td>
<td>Positive Voltage Reference</td>
<td>22</td>
</tr>
<tr>
<td>38</td>
<td>Negative Voltage Reference</td>
<td>23</td>
</tr>
<tr>
<td>39</td>
<td>Negative Voltage Reference</td>
<td>23</td>
</tr>
<tr>
<td>40</td>
<td>Precision Current Sink</td>
<td>24</td>
</tr>
<tr>
<td>41</td>
<td>Precision Current Source</td>
<td>24</td>
</tr>
<tr>
<td>42</td>
<td>Differential-Input Instrumentation Amplifier</td>
<td>25</td>
</tr>
<tr>
<td>43</td>
<td>Variable Gain, Differential-Input Instrumentation Amplifier</td>
<td>26</td>
</tr>
<tr>
<td>44</td>
<td>Instrumentation Amplifier with ±100 Volt Common Mode Range</td>
<td>27</td>
</tr>
<tr>
<td>45</td>
<td>Instrumentation Amplifier with ±10 Volt Common Mode Range</td>
<td>28</td>
</tr>
<tr>
<td>46</td>
<td>High Input Impedance Instrumentation Amplifier</td>
<td>29</td>
</tr>
<tr>
<td>47</td>
<td>Bridge Amplifier with Low Noise Compensation</td>
<td>29</td>
</tr>
<tr>
<td>48</td>
<td>Bridge Amplifier</td>
<td>30</td>
</tr>
<tr>
<td>49</td>
<td>Precision Diode</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>Precision Clamp</td>
<td>31</td>
</tr>
<tr>
<td>51</td>
<td>Fast Half Wave Rectifier</td>
<td>31</td>
</tr>
<tr>
<td>52</td>
<td>Precision AC to DC Converter</td>
<td>32</td>
</tr>
<tr>
<td>53</td>
<td>Low Drift Peak Detector</td>
<td>32</td>
</tr>
<tr>
<td>54</td>
<td>Absolute Value Amplifier with Polarity Detector</td>
<td>33</td>
</tr>
<tr>
<td>55</td>
<td>Sample and Hold</td>
<td>34</td>
</tr>
<tr>
<td>56</td>
<td>Sample and Hold</td>
<td>34</td>
</tr>
<tr>
<td>57</td>
<td>Low Drift Integrator</td>
<td>35</td>
</tr>
<tr>
<td>58</td>
<td>Fast Summing Amplifier with Low Input Current</td>
<td>36</td>
</tr>
<tr>
<td>59</td>
<td>Fast Integrator with Low Input Current</td>
<td>37</td>
</tr>
<tr>
<td>60</td>
<td>Adjustable Q Notch Filter</td>
<td>38</td>
</tr>
<tr>
<td>61</td>
<td>Easily Tuned Notch Filter</td>
<td>39</td>
</tr>
<tr>
<td>62</td>
<td>Tuned Circuit</td>
<td>39</td>
</tr>
<tr>
<td>63</td>
<td>Two-Stage Tuned Circuit</td>
<td>40</td>
</tr>
<tr>
<td>64</td>
<td>Negative Capacitance Multiplier</td>
<td>40</td>
</tr>
<tr>
<td>65</td>
<td>Variable Capacitance Multiplier</td>
<td>41</td>
</tr>
<tr>
<td>66</td>
<td>Simulated Inductor</td>
<td>41</td>
</tr>
<tr>
<td>67</td>
<td>Capacitance Multiplier</td>
<td>42</td>
</tr>
<tr>
<td>68</td>
<td>High Pass Active Filter</td>
<td>42</td>
</tr>
<tr>
<td>69</td>
<td>Low Pass Active Filter</td>
<td>43</td>
</tr>
<tr>
<td>70</td>
<td>Nonlinear Operational Amplifier with Temperature Compensated Breakpoints</td>
<td>43</td>
</tr>
<tr>
<td>71</td>
<td>Current Monitor</td>
<td>44</td>
</tr>
<tr>
<td>72</td>
<td>Saturating Servo Preamplifier with Rate Feedback</td>
<td>44</td>
</tr>
<tr>
<td>73</td>
<td>Power Booster</td>
<td>45</td>
</tr>
<tr>
<td>74</td>
<td>Analog Multiplier</td>
<td>45</td>
</tr>
<tr>
<td>75</td>
<td>Long Interval Timer</td>
<td>46</td>
</tr>
<tr>
<td>76</td>
<td>Fast Zero Crossing Detector</td>
<td>46</td>
</tr>
<tr>
<td>77</td>
<td>Amplifier for Piezoelectric Transducer</td>
<td>47</td>
</tr>
<tr>
<td>78</td>
<td>Temperature Probe</td>
<td>47</td>
</tr>
<tr>
<td>79</td>
<td>Photodiode Amplifier</td>
<td>48</td>
</tr>
<tr>
<td>No.</td>
<td>Circuit Name</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>80</td>
<td>Photodiode Amplifier</td>
<td>48</td>
</tr>
<tr>
<td>81</td>
<td>High Input Impedance AC Follower</td>
<td>48</td>
</tr>
<tr>
<td>82</td>
<td>Temperature Compensated Logarithmic Converter</td>
<td>49</td>
</tr>
<tr>
<td>83</td>
<td>Root Extractor</td>
<td>49</td>
</tr>
<tr>
<td>84</td>
<td>Multiplier/Divider</td>
<td>50</td>
</tr>
<tr>
<td>85</td>
<td>Cube Generator</td>
<td>50</td>
</tr>
<tr>
<td>86</td>
<td>Fast Log Generator</td>
<td>51</td>
</tr>
<tr>
<td>87</td>
<td>Anti-Log Generator</td>
<td>51</td>
</tr>
</tbody>
</table>
1 Introduction

Texas Instruments recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits.

2 Basic Circuits

![Inverting Amplifier](image1)

\[V_{OUT} = \frac{R_2}{R_1} V_{IN} \]
\[R_N = R_1 \]

Figure 1. Inverting Amplifier

![Non-Inverting Amplifier](image2)

\[V_{OUT} = \frac{R_1 + R_2}{R_1} V_{IN} \]

Figure 2. Non-Inverting Amplifier

![Difference Amplifier](image3)

\[V_{OUT} = \left(\frac{R_1 + R_2}{R_3 + R_4} \right) \frac{R_2}{R_1} V_{1} - \frac{R_2}{R_1} V_{2} \]

For \(R_1 = R_3 \) and \(R_2 = R_4 \):
\[V_{OUT} = \frac{R_2}{R_1} (V_2 - V_1) \]
\[\frac{R_1}{R_2} = \frac{R_3}{R_4} \]

For minimum offset error due to input bias current.

Figure 3. Difference Amplifier
R5 = \(\frac{R1}{R2} \div \frac{R3}{R4} \)
For minimum offset error due to input bias current,

Figure 4. Inverting Summing Amplifier

* \(R_S = 1k \) for 1% accuracy

Figure 5. Non-Inverting Summing Amplifier

* Source impedance less than 100k gives less than 1% gain error.

Figure 6. Inverting Amplifier with High Input Impedance
Figure 7. Fast Inverting Amplifier with High Input Impedance

Figure 8. Non-Inverting AC Amplifier

\[
V_{OUT} = \frac{R1 + R2}{R1} V_{IN} \\
R_{IN} = R3 \\
R3 = \frac{R1}{R2}
\]
For minimum offset error due to input bias current.

Figure 9. Practical Differentiator

Figure 10. Integrator
Figure 11. Fast Integrator

\[V_{\text{OUT}} = \frac{V_{\text{IN}}}{R_1} \]

For minimum error due to bias current R2 = R1

Figure 12. Current to Voltage Converter

\[V_{\text{OUT}} = I_{\text{IN}} R_1 \]

For minimum error due to bias current R2 = R1
Figure 13. Circuit for Operating the LM101 Without a Negative Supply

Figure 14. Circuit for Generating the Second Positive Voltage

Figure 15. Neutralizing Input Capacitance to Optimize Response Time
* Adjust for zero integrator drift.
Current drift typically 0.1 nA/°C over −55°C to 125°C temperature range.

Figure 16. Integrator with Bias Current Compensation

Figure 17. Voltage Comparator for Driving DTL or TTL Integrated Circuits
Figure 18. Threshold Detector for Photodiodes

\[V_{\text{OUT}} = 4.6V \text{ for } V_{\text{LT}} \leq V_{\text{IN}} \leq V_{\text{UT}} \]
\[V_{\text{OUT}} = 0V \text{ for } V_{\text{IN}} < V_{\text{LT}} \text{ or } V_{\text{IN}} > V_{\text{UT}} \]

Figure 19. Double-Ended Limit Detector

\[V_{\text{OUT}} = 4.6V \text{ for } V_{\text{LT}} \leq V_{\text{IN}} \leq V_{\text{UT}} \]
\[V_{\text{OUT}} = 0V \text{ for } V_{\text{IN}} < V_{\text{LT}} \text{ or } V_{\text{IN}} > V_{\text{UT}} \]
Figure 20. Multiple Aperture Window Discriminator
Figure 21. Offset Voltage Adjustment for Inverting Amplifiers Using Any Type of Feedback Element

\[
\text{RANGE} = \pm V \left(\frac{R_2}{R_1} \right)
\]

Figure 22. Offset Voltage Adjustment for Non-Inverting Amplifiers Using Any Type of Feedback Element

\[
\text{RANGE} = \pm V \left(\frac{R_3}{R_1} \right)
\]
\[
\text{GAIN} = 1 + \frac{R_3}{R_4 + R_2}
\]

Figure 23. Offset Voltage Adjustment for Voltage Followers

\[
\text{RANGE} = \pm V \left(\frac{R_3}{R_1} \right)
\]
Figure 24. Offset Voltage Adjustment for Differential Amplifiers

Figure 25. Offset Voltage Adjustment for Inverting Amplifiers Using 10 kΩ Source Resistance or Less
Figure 26. Low Frequency Sine Wave Generator with Quadrature Output

- **C2**: 0.02 \(\mu \)F, 1%
- **C1**: 0.01 \(\mu \)F, 1%
- **C4**: 30 pF
- **C3**: 0.01 \(\mu \)F, 1%
- **C5**: 30 pF
- **R1**: 22M, 1%
- **R2**: 22M, 1%
- **R3**: 10M, 1%
- **R4**: 50K
- **D1**: 6.3V
- **D2**: 6.3V

\[f_0 = 1 \text{ Hz} \]
Figure 27. High Frequency Sine Wave Generator with Quadrature Output

* Chosen for oscillation at 100 Hz

Figure 28. Free-Running Multivibrator
Figure 29. Wein Bridge Sine Wave Oscillator

Figure 30. Function Generator

* Eldema 1869 10V, 14 mA Bulb

\[f = \frac{1}{2\pi R_1 C_1} \]
Figure 31. Pulse Width Modulator

Figure 32. Bilateral Current Source

\[I_{out} = \frac{R_3}{R_1 R_5} V_{IN} \]

\[R_3 = R_4 + R_5 \]

\[R_1 = R_2 \]
Figure 33. Bilateral Current Source

\[
\text{\(I_{\text{OUT}} \)} = \frac{R_3 \cdot V_{\text{IN}}}{R_1 \cdot R_5}
\]

\[
R_3 = R_4 + R_5
\]

\[
R_1 = R_2
\]
Figure 34. Wein Bridge Oscillator with FET Amplitude Stabilization
* $V_{\text{OUT}} = 1V/k\Omega$

Figure 35. Low Power Supply for Integrated Circuit Testing
Figure 36. Positive Voltage Reference

Figure 37. Positive Voltage Reference
Figure 38. Negative Voltage Reference

Figure 39. Negative Voltage Reference
Figure 40. Precision Current Sink

\[I_O = \frac{V_{IN}}{R_1} \quad V_{IN} = 0V \]

Figure 41. Precision Current Source

\[I_O = \frac{V_{IN}}{R_1} \quad V_{IN} \leq 0V \]

\[I_O = \frac{V_{IN}}{R_2} \quad R_2 = 10K \]
Figure 42. Differential-Input Instrumentation Amplifier
* Gain adjust $A_v = 10^{-4} R_6$

Figure 43. Variable Gain, Differential-Input Instrumentation Amplifier
† Matching determines common mode rejection.

Figure 44. Instrumentation Amplifier with ±100 Volt Common Mode Range
Figure 45. Instrumentation Amplifier with ±10 Volt Common Mode Range
*† Matching Determines CMRR
‡ May be deleted to maximize bandwidth

Figure 46. High Input Impedance Instrumentation Amplifier

* Reduces feed through of power supply noise by 20 dB and makes supply bypassing unnecessary.
† Trim for best common mode rejection
‡ Gain adjust

Figure 47. Bridge Amplifier with Low Noise Compensation
Figure 48. Bridge Amplifier

\[V_{OUT} = V^+ \left(1 - \frac{R_1}{R_{S1}} \right) \]

Figure 49. Precision Diode
* \(E_{REF} \) must have a source impedance of less than 200Ω if D2 is used.

Figure 50. Precision Clamp

Figure 51. Fast Half Wave Rectifier
* Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Figure 52. Precision AC to DC Converter

Figure 53. Low Drift Peak Detector
Figure 54. Absolute Value Amplifier with Polarity Detector

\[V_{out} = -|V_{in}| \times \frac{R_2}{R_1} \]

\[R_2 = \frac{R_4 + R_3}{R_3} \]
Figure 55. Sample and Hold

![Circuit Diagram 1](image1)

* Polycarbonate-dielectric capacitor

Figure 56. Sample and Hold

![Circuit Diagram 2](image2)

* Worst case drift less than 2.5 mV/sec
† Teflon, Polyethylene or Polycarbonate Dielectric Capacitor
Q1 and Q3 should not have internal gate-protection diodes. Worst case drift less than 500 μV/sec over −55°C to +125°C.

Figure 57. Low Drift Integrator
* In addition to increasing speed, the LM101A raises high and low frequency gain, increases output drive capability and eliminates thermal feedback.
† Power Bandwidth: 250 kHz
Small Signal Bandwidth: 3.5 MHz
Slew Rate: 10 V/μs

Figure 58. Fast† Summing Amplifier with Low Input Current
Figure 59. Fast Integrator with Low Input Current
Figure 60. Adjustable Q Notch Filter

\[f_0 = \frac{1}{2\pi R_1 C_1} \]

- 60 Hz
- \(R_1 = R_2 = R_3 \)
- \(C_1 = C_2 = C_3 \)
Figure 61. Easily Tuned Notch Filter

$$f_0 = \frac{1}{2\pi R_4 C_1 C_2}$$

$$R_4 = R_5$$
$$R_1 = R_3$$
$$R_4 = \frac{1}{3} R_1$$

Figure 62. Tuned Circuit

$$f_0 = \frac{1}{2\pi R_1 R_2 C_1 C_2}$$
Figure 63. Two-Stage Tuned Circuit

\[I_0 = \frac{1}{2 \pi R_1 R_2 C_1 C_2} \]

Figure 64. Negative Capacitance Multiplier

\[C = \frac{R_2}{R_3} C_1 \]
\[I_C = \frac{V_{os} + R_2 V_{os}}{R_3} \]
\[R_S = \frac{R_3 (R_1 + R_{so})}{R_{so} A_{v0}} \]
Figure 65. Variable Capacitance Multiplier

\[C = \left(1 + \frac{R_3}{R_2}\right)C_1 \]

Figure 66. Simulated Inductor

\[L \geq R_1 R_2 C_1 \]
\[R_2 = R_2 \]
\[R_e = R_1 \]
Figure 67. Capacitance Multiplier

Figure 68. High Pass Active Filter

* Values are for 100 Hz cutoff. Use metalized polycarbonate capacitors for good temperature stability.
* Values are for 10 kHz cutoff. Use silvered mica capacitors for good temperature stability.

Figure 69. Low Pass Active Filter

Figure 70. Nonlinear Operational Amplifier with Temperature Compensated Breakpoints
Figure 71. Current Monitor

\[V_{\text{out}} = \frac{R_1 R_3}{R_2} \]

Figure 72. Saturating Servo Preamplifier with Rate Feedback

\[\text{LM103 } 2.4V \]

\[\text{LM101A } \]

\[\text{LM107 } \]

\[\text{Q1} \]

\[\text{R1} 0.1 \text{ } 1\% \]

\[\text{R2} 100 \text{ } 1\% \]

\[\text{R3} 5K \text{ } 1\% \]

\[\text{D1} \]

\[\text{D2} \]

\[\text{C1} 50 \mu F \]

\[\text{C2} 30 \text{ pF} \]

\[\text{R2} 1.8K \]

\[\text{R3} 100K \]
Figure 73. Power Booster

Figure 74. Analog Multiplier

\[R_5 = R_1 \left(\frac{V_1}{10} \right) \]
\[V_i \geq 0 \]
\[V_{out} = \frac{V_1 V_2}{10} \]
* Low leakage $-0.017 \mu F$ per second delay

Figure 75. Long Interval Timer

Propagation delay approximately 200 ns
† DTL or TTL fanout of three.
Minimize stray capacitance
Pin 8

Figure 76. Fast Zero Crossing Detector
Low frequency cutoff = $R_1 \times C_1$

Figure 77. Amplifier for Piezoelectric Transducer

* Set for 0V at 0°C
† Adjust for 100 mV/°C

Figure 78. Temperature Probe
Figure 79. Photodiode Amplifier

\[V_{\text{OUT}} = R_1 I_D \]

Figure 80. Photodiode Amplifier

\[V_{\text{OUT}} = 10 \text{ V/\mu A} \]

*Operating photodiode with less than 3 mV across it eliminates leakage currents.

Figure 81. High Input Impedance AC Follower
10 nA < I_{IN} < 1 mA
Sensitivity is 1V per decade
† 1 kΩ (±1%) at 25°C, +3500 ppm/°C.
Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.
* Determines current for zero crossing on output: 10 μA as shown.

Figure 82. Temperature Compensated Logarithmic Converter

*† 2N3728 matched pairs

Figure 83. Root Extractor
Figure 84. Multiplier/Divider

Figure 85. Cube Generator
† 1 kΩ (±1%) at 25°C, +3500 ppm/°C.
Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.

Figure 86. Fast Log Generator

† 1 kΩ (±1%) at 25°C, +3500 ppm/°C.
Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.

Figure 87. Anti-Log Generator
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated