Single-Chip Modem Provides Low-Cost Data Communication

A simple modem provides an inexpensive way to link your IBM PC or compatible computer with a remote system. The modem, which transmits data asynchronously at 300 baud, is easy to build and features both autodial and autoanswer.

Using a simple design, you can build an inexpensive modem for your IBM PC or compatible computer. Based on a single chip that transforms digital computer data into analog frequencies, the modem lets you transmit data asynchronously via telephone lines at 300 baud. The circuit also uses a DTMF (dual-tone multiple-frequency) tone-dialer chip, a DAA (data-access arrangement) telephone-line interface, and a UART that handles autoanswer and autodial functions. Configured to operate in your PC’s I/O address space, this modem circuit uses an equality detector and a 3- to 8-line decoder to decode address lines, I/O strobes, and DMA strobes.

The modem design is based on the MM74HC942 modem chip. Figure 1 illustrates the chip’s architecture. By eliminating two external op amps, an on-chip line driver and a 2-to-4-wire hybrid simplify the task of interfacing to the telephone line. The line driver drives a 600Ω line through an external 600Ω terminating resistor, thus providing a nominal impedance match between the modem and the phone line. When the programmable level-adjust resistor R₁ is connected between the TLA pin and VCC, the line driver transmits at levels approaching 0 dBm.

You can access the driver externally through the DSI and EXI pins (pins 1 and 18). The EXI input provides a set gain of about 2. The DSI input allows you to achieve an adjustable gain reaching 0 dBm via series resistor R₂. The gain is approximately 20kΩ ≈ R₂.

Because the circuit communicates via 2-wire telephone lines, both incoming and outgoing signals enter the HC942. The on-chip line hybrid rejects the outgoing signal while passing the incoming signal to the demodulator. Under most phone-line conditions, the hybrid provides 10- to 20-dB transmit-carrier rejection. The receive filter of the demodulator section reduces the outgoing signal to negligible levels.

A LOOK AT THE MM74HC942 MODEM CHIP

The MM74HC942 modem IC lets you use simple support circuitry, requires relatively little circuit-board area, and consumes little power. Although the chip is functionally similar to others on the market, it includes an adjustable line driver and programmable carrier-detection circuitry, and it operates from ±5V supplies.

The chip’s analog loopback (ALB) function and power-down mode provide self-testing and power conservation. You set the ALB function by holding the ALB input high, which causes the modulator to shunt its output to the input of the demodulator, providing a simple diagnostic self-test.

The power-conservation feature makes the HC942 power down when both the ALB and SQT inputs are high. The chip typically draws less than 50μA in the power-down mode, so, for certain applications, you might have to add a battery for backup power.

Either the ALB or the SQT input can bring the chip out of its power-down mode, so you can use the HC942 in a bus-like configuration. Because the chip’s inputs and outputs offer 3-state levels, either the ALB or SQT input can serve as a chip select when one of them is low.

MODULATOR CONVERTS DATA

In the modulator section of the modem IC, the frequency synthesizer generates clock frequencies for the sine-wave synthesizer. During transmission, digital data from the CPU or UART enters the TXD input on the HC942, which converts incoming ones and zeros to mark and space frequencies, respectively. The Originate/Answer (O/A) input sets these frequencies into the upper or lower transmit bands (Figure 2).

![Diagram of MM74HC942 modem chip](image1.png)

FIGURE 1. The MM74HC942’s 2-to-4-wire hybrid and line driver let you use simple circuitry to interface your modem to the telephone line.

![Diagram of data conversion](image2.png)

FIGURE 2. The HC942 modem chip converts incoming ones and zeros to mark and space frequencies when digital data enters the chip’s TXD input.
A high signal on the O/A pin lets you originate a call. In the originate mode, the HC942 transmits in the lower band and receives in the upper band. In the answer mode, the chip transmits in the upper band and receives in the lower band. The chip’s sine-wave synthesizer, which is essentially a D/A converter, decodes the output of the frequency synthesizer, producing an FSK output that’s compatible with the Bell 103 standard. Table I shows the frequency assignments for both modes of operation.

Using a 9-pole switched capacitor, the demodulator passes incoming tones at the same time that it virtually eliminates locally transmitted signals. The demodulator’s receive filter then transmits its output to a frequency discriminator, in which two detectors sense the mark and space frequencies, converting each frequency to a logical one or zero. The receive filter also passes output to the carrier detector, which then compares the output of the filter with an externally adjustable voltage at the CDA pin. If you leave this pin floating or connect it to ac ground, the voltage at CDA is 1.2V. The threshold is nominally set on at —42 dBm and off at —45 dBm. When a carrier exceeds the upper threshold, the carrier detector activates the demodulator after a preset timing delay, forcing the CD output low. Timing capacitor C6 at the CDT pin sets the carrier-detect delay. When the carrier level drops below the lower threshold point, the demodulator returns to a disabled state.

TABLE I. Bell 103 Tone Allocation

<table>
<thead>
<tr>
<th>Data</th>
<th>Originate Mode</th>
<th>Answer Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transmit</td>
<td>Receive</td>
</tr>
<tr>
<td>Space Mark</td>
<td>1070 Hz</td>
<td>1270 Hz</td>
</tr>
<tr>
<td></td>
<td>1270 Hz</td>
<td>2225 Hz</td>
</tr>
</tbody>
</table>

The interface hardware between the HC942 and an IBM PC or compatible computer has four major parts: the decoding logic, the communication link, the tone dialer, and the 8250 UART. The HCT138 further decodes the address lines, selecting as address locations on the PC that are reserved for asynchronous communications. The primary location is 2F8 hex–3FF hex; the secondary location is 2F8 hex–2FF hex. When the decoding logic uses these two locations, this interface design is compatible with IBM PC software. (For other address locations, consult the documentation for your computer and for any other add-in cards your computer is using.)

The interface circuit employs an HCT688 equality detector and an HCT138 3-to-8-line decoder. When you connect the IOR and IOW strobes in a NAND configuration, the circuit generates the I/O strobe while the direct-memory-access (DMA) strobe acts as the AEN output from the IBM bus. The equality detector compares its corresponding P and Q inputs and checks to see whether P equals Q. When P and Q are equal, the P–Q output selects the HCT138 decoder and the HCT245 bidirectional bus driver.

The HCT138 further decodes the address lines, selecting as many as eight devices, although it enables only two: the TP5088 tone dialer and the 8250 UART. Output Y7 directly enables the 8250. The Y6 output, however, indirectly enables the TP5088 via an HC123 dual one-shot. This output triggers the one-shot, which activates the TP5088 for a predetermined time. The lower three address lines (A2 through A0) access the 8250’s internal registers by addressing the UART directly.

The 8250 and the HC942 provide the serial communications link between the host and remote computers. During transmission, the UART converts parallel data from the µP to serial data for the HC942. The HC942 receives this data at its TXD input and transmits an FSK output at the TXA output. During data reception, the HC942 receives incoming tones at the RXA1 input, demodulates the tones, and sends serial data through the RXD output to the 8250.

Because the HC942 doesn’t require an external line driver or a hybrid, the modem circuit requires only a few passive components. Resistor R12 sets the line driver’s transmit level (Table II) at the same time that C6 adjusts the carrier-detect timing circuit. This circuit waits a predetermined time (the time period is a function of the RC time constant) before responding to a carrier and sending the CD (Carrier Detected) output high. In addition, the circuit delays for a short time before dropping the CD output low again. Use the following equations to find the appropriate delay times:

\[
T_{OFF-TO-ON} = 6.4 \times C
\]

and

\[
T_{ON-TO-OFF} = 0.54 \times C
\]

where C is in μF and T is in seconds. The first equation gives the delay before transmission begins; the second gives the delay before transmission ends. Note that these times differ considerably. When the modem is preparing to transmit, it must delay long enough to ensure that the carrier is stable; carrier stability is not as critical when the modem is preparing to stop transmitting.

The HC942 uses a common 3.579-MHz crystal (without loading capacitors) to generate all the internal timing and modulated sine waves. The crystal also drives the TP5088’s oscillator. It doesn’t, however, drive the 8250’s oscillator, because IBM PC software requires the 8250 to use a 1.8432-MHz crystal. You can adjust the carrier-detection trip points by applying an external voltage at the CDA (Carrier-Detect Adjust) pin. When you double the nominal voltage (1.2V), the trip points increase by 6 dB. Similarly, when you cut the voltage in half, the trip points decrease by 6 dB.

TABLE II. Standard Resistor Values

<table>
<thead>
<tr>
<th>Transmit Level (dBm)</th>
<th>Transmit Level Adjust Resistor R12 (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>OPEN</td>
</tr>
<tr>
<td>11</td>
<td>19.8k</td>
</tr>
<tr>
<td>10</td>
<td>9.2k</td>
</tr>
<tr>
<td>9</td>
<td>5.49k</td>
</tr>
<tr>
<td>8</td>
<td>3.61k</td>
</tr>
<tr>
<td>7</td>
<td>2.52k</td>
</tr>
<tr>
<td>6</td>
<td>1.78k</td>
</tr>
<tr>
<td>5</td>
<td>1.24k</td>
</tr>
<tr>
<td>4</td>
<td>866</td>
</tr>
<tr>
<td>3</td>
<td>562</td>
</tr>
<tr>
<td>2</td>
<td>336</td>
</tr>
<tr>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

UNIVERSAL SERVICE ORDER CODE
FIGURE 3a. The interface hardware between the HC942 and the computer (an IBM PC or compatible) comprises four major parts: the decoding logic, the communication link, the tone dialer, and the data-access arrangement (DAA).
Because the modem operates in full-duplex mode, most of the handshake signals—Data Terminal Ready (DTR), Clear To Send (CTS), etc.—operate as general-purpose control signals. You need to use only the DCD (Data Carrier Detect) and RI (Ring Indication) signals. To control the modem, the UART switches the HC942 into the originate/answer mode and the squelch mode (modulator disabled) through outputs RTS and OUT1. The B250 also closes the on/off-hook-switch relay through output DTR.

The B250 receives status information from the carrier-detection and ring-detection circuits. When a carrier is present, the internal carrier detector of the HC942 sends a Carrier Detected signal to the DCD input port of the B250. This signal gives the cue to begin data communication. Similarly, the ring detector in the DAA sends a signal to the RI input port during a ring signal.

The DTMF tone dialer operates by summing two tones, one from a low group and one from a high group (Table III). The telephone line driver of the HC942, you can raise the 5088’s minimum output level to 0 dBm. Transistor Q4 raises the output level of the line driver to its maximum by shorting the transmit-level adjustment resistor R12.

Table III. Functional Truth Table

<table>
<thead>
<tr>
<th>Keyboard Equivalent</th>
<th>Data Inputs</th>
<th>Tone Enable</th>
<th>Tones Out</th>
<th>Mute</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
<td>Enable</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Before coupling a tone dialer to the phone lines, you must make sure the dialer meets certain FCC guidelines. For instance, you must maintain specified dc voltages and loop currents for all loop lengths, match the impedance to the phone line, and provide tones within specified amplitude and distortion limits.

By designing the DAA correctly, you can make your tone dialer meet the first two of these guidelines. Because the 5088 generates low tone distortion, you can ignore the distortion limit. However, you must boost the 5088’s output levels to the output levels shown in Figure 4. Using the inter-

FIGURE 4. Although the TP5088 tone dialer allows you to ignore distortion limits, you must boost its output levels to conform with the FCC limits shown here.

DAA Performs Dual Functions

The DAA is both a protective device and a functional modem interface. Although the DAA is simple, you should submit your final design to qualified testers to ensure that your circuit conforms to FCC rules (part 68 and part 15).

In its protective capacity, the DAA provides surge protection from natural hazards (like lightning) and from induced voltages generated by relay coils. The DAA also provides dc isolation between the phone line and the modem. Its modem-interface functions include ring detection and on- and off-hook control. The DAA’s ring-detection circuit sends a signal to the CPU via the B250 (shown in Figure 3a) when an incoming ring occurs. On- and off-hook control takes place via a relay that the B250 controls with its DTR signal. The DAA has three sections: the transformer, the relay, and the ring detector. The circuit’s 600Ω 1:1 transformer isolates the modem from the phone lines, preventing line interference. For voice and data communication, the transformer must have a flat frequency response from 300 to 3300 Hz with little harmonic distortion. As you can see from Figure 3b, a current sink (Q2 and Q3) is connected in parallel with the transformer. The diode drop across R18 shunts excess current.

The current flowing through telephone lines varies from 20 to 120 mA. If your design requires a transformer that can handle at least 30 mA, you’ll need the current sink to shunt the excess current from the phone line, preventing transformer saturation. Of course, if you were to use a transformer that could handle more than 30 mA, you wouldn’t need a current sink, but the transformer would be both heavy and expensive.

A relay in the DAA provides on- and off-hook control. By closing, the relay switches the modem off-hook and connects the DAA to the telephone line. The DTR signal from the B250 controls this relay by switching Q4 on. This transistor allows current to flow through the relay and close its contacts. A dpdt relay completely isolates the relay-control circuit when the modem is on-hook.
The ring-detector circuit in Figure 3b sends a signal to the CPU via the 8250 when an incoming ring occurs. Because the incoming ring signal is nominally 90V rms, you can't couple it directly to the DAA. The ring detector includes a 27V zener diode, a capacitor (C10), and an optocoupler. The zener diode prevents noise from tripping the ring detector. C10 creates a high dc impedance so that the ring detector won't affect other circuits in the DAA. Note that C10 must be able to accommodate high voltages, such as the high amplitude of the ring signals. The optocoupler provides isolation and translates the high-voltage ring signals into digital levels.

The optocoupler toggles on and off during a ring, producing a series of low-going pulses. An RC network (R21 and C11) smooths these pulses to a single low pulse. The 8250 receives this pulse at its RI (ring indication) input port. The μP detects the ring by polling this port or by servicing the generated interrupt.

PC EMULATES A DUMB TERMINAL

The communication program for the modem (the listing begins next page) consists of three routines (for autodial, autoanswer, and terminal emulation). The first two routines establish a connection by either dialing a number or answering a call. The main terminal routine then configures the IBM to act as a dumb terminal that transmits to the phone line all characters you enter from the keyboard and displays all incoming characters on the CRT. The program is menu driven; you select either the autodial or the autoanswer routine. At the end of these routines, control jumps either to the terminal program or to the main menu. You use the “table of equates” at the beginning of the program to set up the initialization parameters.

The communication program frequently accesses the modem registers to control outputs DTR, RTS, and OUT1. It also polls the line status register to read status-input ports RI and DCD.

When you select the autoanswer option from the menu, the routine begins by polling bit 6 of the modem’s status register to detect incoming calls. When a ring occurs, this bit goes high. The modem does not immediately go off-hook, however, because the ring signal’s high voltage causes arcing between the relay contacts. Instead, the program delays answering for 2.5s, lifting the modem off-hook between rings. The modem goes off-hook by setting bits 0 and 1 of the modem’s control register low. The RTS and DTR outputs, in turn, go low. These outputs then switch the HC942 into the answer mode by closing the relay to establish a connection.

After the modem answers the telephone, a 2s billing delay must occur (according to FCC regulations) before transmission can begin. During this period, the telephone company’s central offices exchange the callers’ billing information. A software delay keeps bit 2 of the modem’s control register low, ensuring that the HC942 engages the squelch function during this period. After the billing delay, the HC942 disengages the squelch function, and the μP polls bit 7 of the modem’s status register. If bit 7 is high, a carrier is present, and data communication can begin. The autoanswer routine then jumps to the main program to transmit and receive data. If the other computer fails to respond with a carrier, the autoanswer routine times out, and control returns to the main menu.

The autodial routine first asks you whether you want to make a long-distance or a local call and then enters the phone number into buffer BUFF1. Next, the modem dials the phone number by fetching a digit from the buffer and sending it to the TPS088. The μP then waits 200 ms. During this period, the HC123 one-shot enables the TPS088 for 80 ms and then disables it for the remaining 120 ms. Therefore, each digit comprises an 80 ms DTMF tone followed by 120 ms of silence. After the modem dials the phone number, the μP polls bit 7 in the status register to see if a carrier is present. Modern operation then takes place as in the autoanswer mode.

The main program enters either from the autodial or the autoanswer routine. It polls the line status register (LSR) and the modem’s control register (MCR) to determine whether characters from the keyboard or the telephone line are present and to detect transmission errors or carrier loss. When keyboard characters are present, bit 5 of the LSR goes high; when line characters are present, bit 0 goes high. The μP then reads the characters from the UART. Bits 1, 2, and 3 of the LSR indicate transmission errors; when such errors occur, the CRT displays a question mark. Bit 7 of the MCR indicates carrier loss. If the main program detects carrier loss during transmission, it disconnects the modem and returns to the main menu.
COMMUNICATIONS PROGRAM for the HC942.
:
: Table of Equates
:
TP5088 EQU 2E8H ;ADDR. OF TP5088
RBR EQU 2F8H ;RECEIVER BUFFER REG.
THR EQU RBR ;TRANSMITTER HOLDING REG.
LDL EQU RBR ;LOWER DIVISOR LATCH
IER EQU RBR+1 ;INTR. ENABLE REG.
UDL EQU RBR+1 ;UPPER DIVISION LATCH
IIR EQU RBR+2 ;INTR. ID. REG.
LCR EQU RBR+3 ;LINE CONTROL REG.
MCR EQU RBR+4 ;MODEM CONTROL REG.
LSR EQU RBR+5 ;LINE STATUS REG.
MSR EQU RBR+6 ;MODEM STATUS REG.
SCR EQU RBR+7 ;SCRATCH REG.
BAUD1 EQU 0F4H ;LOWER BAUD RATE DIVISOR
BAUD2 EQU 1 ;UPPER BAUD RATE DIVISOR
LCNTL EQU 07H ;DATA CONTROL - 8 DATA BITS, 2 STOP
: BITS, NO PARITY
LOCPH EQU 90 ;DIGIT COUNTER FOR LOCAL PHONE NO.
LDPH EQU 120 ;DIGIT COUNTER FOR LONG DIS. PH NO.
:
STACK SEGMENT PARA STACK 'STACK'
 DB 256 DUP(0)
STACK ENDS
:
DATA SEGMENT PARA PUBLIC 'DATA'
 BUFF DB 256 DUP(0) ;BUFFER FOR PHONE NUMBER
MSG1 DB '**** IN DIALING MODE ***'
MSG2 DB 'Is call long distance? (Y/N) '
MSG3 DB 'Enter long dis. ph.no. (1-AAA-PPP-SSSS) '
MSG4 DB 'Enter local ph. no. (9-PPP-SSSS) '
MSG5 DB 'No answer, call again? (Y/N) '
MSG6 DB 'Dialing and waiting for a response.... '
MSG7 DB '**** MODEM COMMUNICATIONS PROGRAM ***
 DB ' 1 Dial a number '
 DB ' 2 Auto-answer routine '
 DB ' 3 Exit and return to DOS '
MSG8 DB '**** Phone line has been disconnected. '
MSG9 DB 'Carrier Detected. Phone is connected '
MSG10 DB '**** AUTO-ANSWER MODE ****
 DB 'Strike any key to exit mode '
MSG11 DB 'Ring detected, waiting for carrier... '
MSG12 DB 'No carrier detected, phone disconnected.'
ERR DB '...Invalid entry, re-enter phone no. '
DATA ENDS
COMMUNICATIONS PROGRAM for the HC942 (Continued)

: CODE SEGMENT PARA PUBLIC 'CODE'
 PUBLIC START1

START1 PROC FAR
;
; Program Prolog
;
 ASSUME CS:CODE
 PUSH DS
 MOV AX,0
 PUSH AX
 MOV AX,DATA
 MOV DS,AX
 ASSUME DS:DATA
;
; Initialize the Line Control Register of UART
;
; - No. of data and stop bits, baud rate, and parity of
; or no parity
 MOV DX,LCR ;LINE CONTROL REG
 MOV AL,80H ;PREPARE FOR BAUD RATE DIV.
 OUT DX,AL
 MOV DX,LDL ;LOWER DIVISOR LATCH
 MOV AL,BAUD1 ; LOWER DIVISOR
 OUT DX,AL
 MOV DX,UDL ;UPPER DIVISOR LATCH
 MOV AL,BAUD2 ; UPPER DIVISOR
 OUT DX,AL
 MOV DX,LCR ;LINE CONTROL REG.
 MOV AL,LCNTL ; UART DATA CONTROL
 ; See EQU for data control
 OUT DX,AL
;
; Disable interrupts of 8250 UART
;
 MOV DX,IER ;INTR. ENABLE REG.
 MOV AL,0 ;DISABLE ALL INTR. OF 8250
 OUT DX,AL
;
; Select Auto-dial or Auto-answer routine
;
MENU: MOV BX,OFFSET MSG7 ;SHOW OPENING MESSAGE
 CALL DISPLAY
 CALL CR--LF ;<CR> AND <LF>
 CALL DISPLAY
 CALL DISPLAY
 CALL DISPLAY
 CALL CR--LF
 CALL INFCHAR
 CALL DISFCHAR
 CALL CR--LF ;<CR> AND <LF>
COMMUNICATIONS PROGRAM for the HC942 (Continued)

CMP AL,'1'; GOTO AUTO-DIAL ROUTINE IF "1"
JE DIAL
CMP AL,'2'; GOTO AUTO-ANS IF "2"
JE ANSW
RET; RETURN TO DOS

; **** AUTO-ANSWER MODE ****
;
; This routine answers the phone 2.5 seconds after ring is detected.
; If after 10 seconds no carrier is detected, program returns to the menu.
;
ANSW: MOV BX,OFFSET MSG10 ;DISPLAY AUTO-ANS MESSAGE
CALL DISPLAY
CALL DISPLAY
AANS: MOV AH,1
INT 16H
JNZ MENU1 ;EXIT IF ANY KEY IS STRUCK
MOV DX,MCR ;MODEM CONTROL REG.
IN AL,DX
TEST AL,40H ;TEST RING INDICATOR -- RI=1
JZ AANS
JMP RING
MENU1: CALL INPCHAR ;CLEAR CHAR. IN KEYBOARD
JMP MENU

; Wait for 2.5 seconds after ring is detected
;
RING: MOV CI,12 ;LOAD DELAY COUNTER
WAIT1: NOP
CALL DELAY ;DELAY FOR 0.2 SEC
LOOP WAIT1
MOV BX,OFFSET MSG11 ;RING HAS BEEN DETECTED
CALL DISPLAY

; Switch MODEN into answer mode -- O/A
;
MOV DX,MCR ;MODEM CONTROL REG.
MOV AL,3 ;DTR=0, RTS=0, OUT1=1 IN ANS. MODE AND MODEM SQUELCHED
OUT DX,AL

; Wait for 2 second billing delay
;
MOV CX,12D ;LOAD DELAY COUNTER
WAIT2: NOP
CALL DELAY
LOOP WAIT2
MOV DX,MCR ;MODEM CONTROL REG.
MOV AL,7 ;DTR=0, RTS=0, OUT1=0 MODEM UNSQCH
OUT DX,AL
COMMUNICATIONS PROGRAM for the HC942 (Continued)

; Poll for carrier. Timeout after 10 seconds
;
 MOV CX,500 ;LOAD TIMEOUT COUNTER
CARR: MOV DX,MSR
 IN AL,DX
 TEST AL,80H ;TEST FOR CARRIER -- DCDm1
 JMZ COMM1
 CALL DELAY ;WAIT 0.2 SEC THEN POLL AGAIN
 LOOP CARR
 JMP NC
COMM1: JMP COMM ;GO TO MAIN PROGRAM

; No carrier detected after answering phone, hang up and go back
; to auto-answer routine
;
 NC: MOV BX,OFFSET MSG12
 CALL DISPLAY
 MOV DX,MCR ;MODEM CONTROL REG.
 MOV AL,00 ;CODE TO HANG UP PHONE
 OUT DX,AL
 JMP ANSW

; **** DIALING ROUTINE ****
;
; Determine long distance or local call
;
 DIAL: MOV BX,OFFSET MSG1 ;DISPLAY OPENING MESS.
 CALL DISPLAY
 IMP: MOV BX,OFFSET MSG2 ;' LONG DISTANCE? '
 CALL DISPLAY
 CALL INPCHR ;INPUT CHAR.
 CALL DISPCHR ;DISPLAY CHAR.
 CALL CR-LF ;<CR> AND <LF>
 CMP AL,'N' ;IS CHAR. A 'n' OR A "N"
 JE SHT
 CMP AL,'n'
 JE SHT
 ; Enter long distance phone number into buffer
;
 MOV BX,OFFSET MSG3 ;PROMPT FOR LONG DIS. CALL
 CALL DISPLAY
 MOV BX,OFFSET BUFF ;STARTING OFFSET OF BUFFER
 MOV CL,LDPH ;COUNTER LONG DIS. PH. NUMBER AND <CR>
 CALL BUFFER ;ENTER PH. NO. INTO BUFFER
 CALL CR-LF ;<CR> AND <LF>
 JMP OFFHK

JMP OFFHK
COMMUNICATIONS PROGRAM for the HC942 (Continued)

; Enter local phone number into buffer
;
SHT: MOV BX,OFFSET MSG4 ;PROMPT FOR LOCAL CALL
 CALL DISPLAY
 MOV BX,OFFSET BUFF ;STARTING OFFSET OF BUFFER
 MOV CL,LOCPH ;COUNTER FOR LOCAL PH. NUMBER AND <CR>
 CALL BUFFER
 CALL CR<LF> ;<CR> AND <LF>

; Take phone off-hook -- DTRm0, OUT1=1, OUT2=0
;
OFFHK: MOV DX,MCR ;MODEM CONTROL REG.
 MOV AL,05H ;DTRm0, OUT1=1,
 OUT DX,AL ; OUT2=0 MODEM IS POWERED DOWN

; Wait for 2 sec. to get a dial tone
;
 MOV CX,100
LOOP2: NOP
 CALL DELAY ;WAIT FOR 200 ms
 LOOP LOOP2 ;LOOP BACK 10 TIMES FOR A TOTAL OF 2000 ms

; Dial phone number: Get number from buffer, send data to TP5088 for
; 80 ms and off 120 ms. This is continued until a
; <CR> is encountered.
;
 CLI ;DISABLE INTR. OF 8088
 MOV BX,OFFSET MSG6 ;DISPLAY MESSAGE6
 CALL DISPLAY
 MOV BX,OFFSET MSG6 ;DISPLAY MESSAGE6
 CALL DELAY ;WAIT FOR 200 ms
 LOOP LOOP3: MOV DX,TP5088 ;ADDR. TP5088
 MOV AL,[BX] ;INPUT CHAR. FROM BUFFER
 CMP AL,0DDH ;IS CHAR. A DD HEX
 JE CD ;YES, END DIALING
 OUT DX,AL
 INC BX
 JMP LOOP3

; Wait for carrier detection or timeout
;
CD: STI ;ENABLE INTR. OF 8088
 MOV DX,MCR ;MODEM CONTROL REG.
 MOV AL,1 ;TAKE MODEM OUT OF POWER DOWN MODE
 OUT DX,AL
 CALL DELAY ;WAIT FOR 0.4 SEC
 CALL DELAY
 MOV CX,1000
COMMUNICATIONS PROGRAM for the HC942 (Continued)

L00F4: MOV DX,MSR ;MODEM STATUS REG.
 IN AL,DX
 TEST AL,80H ;TEST FOR DCD=0
 JNZ COMM
 CALL DELAY ;WAIT 200 ms, THEN CK, DCD AGAIN
L00F4

; No answer after 20 sec., hang up, then call again or return to DOS?
;
 MOV DX,MCR ;MODEM CONTROL REG.
 MOV AL,00 ;CODE TO UART TO HANG UP PHONE
 OUT DX,AL
 MOV BX,OFFSET MSG5 ;" NO ANS., CALL AGAIN? "
 CALL DISPLAY
 CALL INPCHAR ;INPUT CHAR.
 CALL DISPCHAR ;ECHO CHAR.
 CALL CRDLF
 CMP AL,'Y' ;IS CHAR. A 'Y' OR A "y"
 JE BACK
 CMP AL,'y'
 JE BACK
 JMP MENU ;GO BACK TO MAIN MENU
BACK: JMP OFFHK

; MAIN PROGRAM ****
; This is the communication routine. The Line Status
; Register is constantly polled for incoming and outgoing
; characters.
;
COMM: MOV DX,MCR ;MODEM CONTROL REGISTER
 MOV AL,05H ;DTR=0, OUT1=0 -- MODEM IS UNSQUELCHED
 OUT DX,AL
 MOV BX,OFFSET MSG9 ;INDICATE THAT CARRIER IS DETECTED
 CALL DISPLAY
 CALL INPCHAR ;INPUT CHAR.
 CALL CRDLF
 CMP AL,'y' ;IS CHAR. A 'Y' OR A "y"
 JE BACK
 CMP AL,'y'
 JE BACK
 JMP MENU ;GO BACK TO MAIN MENU
MAIN: MOV DX,LSR ;LINE CONTROL REG.
 IN AL,DX ;INPUT LINE STATUS FROM UART
 TEST AL,1EH ;ERROR CONDITION?
 JNZ ERROR
 TEST AL,01H ;DATA RECEIVED?
 JNZ REC
 TEST AL,20H ;TRANSMISSION READY?
 JZ MAIN
 MOV DX,MSG ;MODEM STATUS REG.
 IN AL,DX
 TEST AL,80H ;DCD=1? OR DATA CARRIER LOST?
 JZ RTRN

; Check keyboard for key strike
;
 MOV AH,1
 INT 16H
 JZ MAIN ;POLL AGAIN IF NO KEY STRIKE
COMMUNICATIONS PROGRAM for the HC942 (Continued)

; Input character from keyboard and send it to the UART
; MOV AH,0
; INT 16H
; MOV DX,THR ;TRANSMISSION HOLDING REG.
; OUT DX,AL ;SEND CHAR. TO UART
; JMP MAIN

; **** Data received routine: read data from UART and display it
; Read data from the UART
; REC: MOV DX,RBR ;REC. BUFFER REG.
; IN AL,DX
; AND AL,7FH ;STRIP OFF MSB
; PUSH AX ;SAVE AX

; Display character obtain from UART
; MOV BX,0
; MOV AH,14
; INT 10H ;DISPLAY CHAR. ON CRT
; POP AX ;RESTORE AX
; CMP AL,0DH ;IS CHAR A <CR>?
; JE CR
; CMP AL,03H ;IS CHAR. A 'C'?
; JE RTRN
; JMP MAIN

; If <CR> is hit, then add a <LF>
; CR: MOV AL,0AH ;<LF>
; MOV BX,0
; MOV AH,14
; INT 10H
; JMP MAIN

; If 'C' is hit, then hang up and return to main menu
; RTRN: MOV BX,OFFSET MSG8
; CALL DISPLAY
; MOV DX,MCR ;MODEM CONTROL REG.
; MOV AL,00 ;SEND CODE TO UART HANG UP PH. LINE
; OUT DX,AL
; JMP MENU ;RETURN TO MAIN MENU

; **** Error routine: display a '?' if there is a transmission error
; ERROR: MOV DX,RBR ;RECEIVER BUFFER REG.
; IN AL,BX ;CLEAR REC. BUFFER OF ERRONEOUS DATA
; MOV AL,'?'
; MOV BX,0
COMMUNICATIONS PROGRAM for the HC942 (Continued)

MOV AH,14
INT 10H ;DISPLAY A '?' ON CRT
JMP MAIN

;**
; 'BUFFER' subroutine - places phone number in buffer (BUFF)
; Entry: BX=offset of buffer
; CL=counter of phone number digits
; Output: BX,CL altered
;**
PUBLIC BUFFER

BUFFER PROC NEAR

MOV CH,CL ;SAVE DIGIT COUNTER
INPT: CALL INPCHAR ;INPUT CHAR.
CALL DISPCHAR ;ECHO CHAR.
CMP AL,'1' ;IS CHAR. A '1'
JE INPT
CMP AL,'0' ;IS CHAR. A '0'
JE ZERO
PUSH AX ;SAVE AX
SUB AL,30H ;CONVERT ASCII TO BINARY
MOV [BX],AL ;MOVE DIGIT INTO BUFFER
CONT: INC BX
DEC CL
POP AX
CMP AL,00H ;IS CHAR. A <CR>?
JE CK
JMP INPT
CK: CMP CL,0 ;IS COUNTER=0?
JE EXIT1
MOV BX,OFFSET ERR ;DISPLAY ERROR MESSAGE IF BAD ENTRY
CALL DISPLAY
MOV BX,OFFSET BUFF ;RE-ENTER STARTING OFFSET OF BUFFER
MOV CL,CH ;RE-ENTER DIGIT COUNTER
JMP INPT
ZERO: PUSH AX ;SAVE AL
MOV AL,0AH ;CODE TO DIAL A ZERO
MOV [BX],AL ;MOVE "ZERO" DIGIT INTO BUFFER
JMP CONT
EXIT1: RET ;RETURN TO PHONE DIAL ROUTINE
BUFFER ENDP

;**
; 'DELAY' subroutine - waits for 200 ms
; Entry: none
; Output: all register preserved
;**
PUBLIC DELAY

14
COMMUNICATIONS PROGRAM for the HC942 (Continued)

DELAY PROC NEAR
 PUSH CX
 MOV CX,34000D ;LOOP BACK 34,000 TIMES
LOOPS: NOP
 ADD AL,1
 SUB AL,1
 LOOP LOOPS
 POP CX
 RET ;RETURN TO PHONE DIAL ROUTINE
DELAY ENDP

PUBLIC INPCHAR
INPCHAR PROC NEAR
 MOV AH,0
 INT 16H
 RET
INPCHAR ENDP

PUBLIC DISPLAY
DISPLAY PROC NEAR
 PUSH CX
 PUSH AX
 MOV CX,40D ;CHAR. STRING IS 40 CHAR. LONG
DISP1: MOV AL,[BX] ;SET CHAR. FROM DATA SEG.
 CALL DISPCHAR ;DISPLAY CHAR.
 INC BX
 LOOP DISP1
 CALL CRÐLF
 POP AX
 POP CX
 RET ;RETURN TO PHONE DIAL ROUTINE
DISPLAY ENDP

PUBLIC DISPCHAR

; "INFOCHAR" subroutine - invokes BIOS routine to input char. from keybd.
; Entry: none
; Output: AL=character entered from keyboard
PUBLIC INFOCHAR
INFOCHAR PROC NEAR
 MOV AH,0
 INT 16H
 RET
INFOCHAR ENDP

; "DISPLAY" subroutine - display a character string stored in the data segment.
; Entry: BX=offset of message string
; Output: BX altered
PUBLIC DISPLAY
DISPLAY PROC NEAR
 PUSH CX
 PUSH AX
 MOV CX,40D ;CHAR. STRING IS 40 CHAR. LONG
DISP1: MOV AL,[BX] ;SET CHAR. FROM DATA SEG.
 CALL DISPCHAR ;DISPLAY CHAR.
 INC BX
 LOOP DISP1
 CALL CRÐLF
 POP AX
 POP CX
 RET ;RETURN TO PHONE DIAL ROUTINE
DISPLAY ENDP

PUBLIC DISPCHAR

COMMUNICATIONS PROGRAM for the HC942 (Continued)

DISPCHAR PROC NEAR
 PUSH BX
 MOV BX,0
 MOV AH,14
 INT 10H
 POP BX
 ;RETURN TO PHONE DIALING ROUTINE
DISPCHAR ENDP

;**
; 'CR--LF' subroutine - produces a carriage return and line feed
; Entry: none
; Output: all register preserved
;**
PUBLIC CR--LF
CR--LF PROC NEAR
 PUSH AX
 MOV AL,0DH ;CARRIAGE RETURN
 CALL DISPCHAR
 MOV AL,0AH ;LINE FEED
 CALL DISPCHAR
 POP AX
 ;RETURN TO PHONE DIALING ROUTINE
CR--LF ENDP

START1 ENDP
CODE ENDS
END START1

LIT. # 100444

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such safety-critical applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated