SCANSTA111,SCANSTA112

Partition IEEE 1149.1 SCAN Chains for Manageability!
The proliferation of IEEE 1149.1 supported devices is helping Design for Test (DfT) engineers solve complex test access problems during board test. As ICs become more complex and boards become denser, this dedicated 5-wire serial test bus provides simple, standardized access to internal test nodes unreachable with existing In-Circuit-Test (ICT) methods. Many new board designs are incorporating JTAG as a standard feature for test and programming access – in many cases there is simply no other methodology capable of achieving an acceptable level of board fault coverage, or a cost effective means of programming on-board.

If you're investigating this technology for addition to a new board design, consider this: Many 1149.1 devices on a single JTAG chain mean numerous boundary scan cells and long JTAG chains, large test vector sets, and long test times. A method of partitioning the JTAG chain will improve manageability, device targeting, and isolation (Figure 1). Furthermore, if you're considering a system level test strategy at some point in the future, a method to support JTAG across the system backplane is needed to support this strategy.

The solution is to use a multi-drop JTAG multiplexer IC on each board to manage the test bus. The multi-drop capability supports a backplane JTAG bus with addressable access to each board (Figure 2), while the multiplex capability supports multiple partitioned JTAG chains on a single board. This allows a design with critical IC components isolated into private JTAG chains for direct access, or isolation of JTAG programmable components for the fastest configuration access.

For instance, if you were using a JTAG accessible microprocessor to emulate bus cycles for FLASH programming, it would make sense to isolate the processor on a dedicated JTAG chain to optimize the speed of this approach. If you're using FPGAs from different vendors on the same board, be aware that FPGA vendors don't necessarily use the same vector formats, or some can't handle having any additional devices on the same chain with the target device, therefore isolation is necessary. It may also be prudent to isolate backplane buffer devices onto a single JTAG chain – this allows you to quickly verify the circuit board is inserted into the backplane properly.
SCANSTA111
The SCANSTA111 is a multi-drop addressable JTAG multiplexer that features three configurable local JTAG ports. When the ‘STA111 is added to a board, the backplane test port can be accessed with a dedicated JTAG connector during board test, or connected to a backplane test bus. When multiple cards with a ‘STA111 are connected to the backplane test bus, each with a unique address, the card can be selected for access to any combination of the three local JTAG ports on that board. The device also supports two pass thru bits on some local ports for emulators or for delivering write pulses for FLASH programming. The ‘STA111 addressing and multiplexing scheme is well supported and automated by the major ATPG (Automatic Test Program Generation) software vendors such as JTAG Technologies, Goepel, and Corelis.

SCANSTA112
The SCANSTA112 is an enhanced version of the ‘STA111, featuring seven local scan ports for designs which require additional partitioning of the JTAG test bus. In addition, this device has an interchangeable bidirectional backplane and LSP0 port to allow an alternate test master or an emulator to take control of the JTAG bus. Selection of the local JTAG ports can be accomplished by an instruction, or by external pins when the device is placed in stitcher mode.

The IEEE 1149.1 Standard for Boundary Scan Test (often referred to as JTAG, 1149.1, or just “dot 1”) is an industry standard method for accessing test features on complex ICs and circuit boards. Compliant ICs and boards have a 4-wire serial bus (with optional reset) to support JTAG test – TDI (test data in), TDO (test data out), TMS (test mode select), and TCK (test clock). In addition to its use for structural test, many CPLD manufacturers are using JTAG as a standard method for programming or configuring their devices. JTAG supports not only structural (interconnect) test, but is now a well supported standard approach for enabling system-level access for configuration, programming, and mixed signal test.

Additional Information
http://www.national.com/scan

Visit The National Edge, our online technical journal for an archive of Application Briefs and other interesting information. edge.national.com
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are not designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>www.interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated