Abstract

The application of TFT displays for handset applications requires new display system architectures to have on-chip image processing in order to accommodate a direct camera connection. Other image processing techniques like stochastic dithering are required to reduce the size of the on-chip frame buffer thus reducing power and silicon real estate utilization, while preserving high image quality. The purpose of this paper is to explore the applicability of certain key image processing techniques, which add value to display column drivers with respect to their typical usage. The benefits and caveats of these image processing methods with respect to power and system bandwidth are articulated and their hardware requirements are discussed.

1. Objective and Background

The handset market has recently seen the emergence of cell phones equipped with image sensors or cameras. To capture video from these CMOS imagers a video port with a YCC/RGB interface is available on Small Format Column drivers [1]. However, the small format column drivers are meant for QCIF, QCIF+ and QVGA TFT displays and hence video coming from Megapixel Imager needs to resampled. This process of resampling is called Image Scaling. The incorporation of an Image Scaler on a column driver with a video port enables a direct camera connection, eliminating the need for an interface chip between the Imager and the column driver. This value added column driver is now in line with market trend while greatly reducing the cost of the camera interface circuitry. The direct connection between a column driver and a camera is shown in Figure 1. The paper discusses different image scaling techniques in terms of the hardware requirements, feasibility of integration with a column driver and the impact this integration has on system bandwidth, power and image quality.

The on-chip frame buffer on the column driver consumes most of silicon real estate for a column driver. The recent market trend is moving towards smaller pixel pitch for TFT displays which constrains the length of the silicon area for driver chips. Hence, it is imperative to develop a scheme to reduce the size of the column driver chips. Reducing the size of the on-chip frame buffer results in a silicon area savings for the column driver. One way of achieving a smaller frame-buffer is to reduce the memory word-width or the pixel resolution in bits while still maintaining a high image quality. Using multitone to shape the quantization noise generated due to the reduction in pixel resolution preserves image quality. Thus, the use of multitone enables the reduction of the frame-buffer and consequently of the column driver without compromising the image quality. Different multitone strategies will be discussed in this paper with emphasis on hardware requirements, feasibility of integration as well as the impact on power, silicon real estate consumption and image quality.

2. Results

The pros and cons of three popular Image Resampling strategies as well as their applicability to small format column drivers is summarized in Table 1 below. Silicon Area Estimates are obtained in terms of gate counts by using synthesis tools like Synopsys. MATLAB routines were developed to capture the different scaling strategies. These MATLAB routines were used for qualitative evaluation of different image scaling strategies. The output scaled images obtained as a result of executing these routines were visually inspected for quality determination.
<table>
<thead>
<tr>
<th>Scaling Strategy</th>
<th>Image Quality</th>
<th>Hardware Requirements and Approximate Gate Count</th>
<th>Bandwidth Impact</th>
<th>Power Impact</th>
</tr>
</thead>
</table>
| Nearest Neighbor | • Significant amount of aliasing manifesting itself as jaggedness in the output image. [1]
• Ringing artifacts due to Gibbs phenomenon. | • Counters/Adders for Interpolation Grid Generation.
• Approximately 1100 gates needed. Integration with a column driver is feasible on a 500 nm process. Deep sub-micron process not needed.
• Due to hardware simplicity, a good strategy for small format drivers like SQCIF, QCIF and QCIF+ where the prospect of a direct camera connection outweighs image quality concerns. | Depends on the pixel resolution of the image sensor. To avoid jaggedness the scaler and the video datapath should be able to accept video at 15 fps. For a Megapixel(1280x1024) sensor with YCC8 output this translates to bandwidth requirement of about 40 MHz. | Direct camera connection only used in the viewfinder mode, which is a low percentage usage condition. Hence, with an operating speed of 40 MHz the overall battery consumption is low due to low usage. |
| Bilinear Interpolation (Separable 2-Point Interpolation) | • Better than nearest neighbor in terms of aliasing. Although, aliasing artifacts are still present. [1]
• Significant amount of passband attenuation leads to blurring artifacts. [1] | • Two 2-Tap FIR filters one for the Column and one for the Row dimension. Convolution operation requires 2 multipliers and one adder per color channel. Two image lines need to be stored for column dimension convolution.
• Integration with column driver only possible on a deep sub-micron process (< 0.25 um) for efficient silicon real estate utilization.
• Due to some hardware complexity, this strategy is applicable for medium quality QCIF+ and QVGA small format column drivers. | Depends on the pixel resolution of the image sensor. To avoid jaggedness the scaler and the video datapath should be able to accept video at 15 fps. For a Megapixel(1280x1024) sensor with YCC8 output this translates to bandwidth requirement of about 40 MHz. Due to the arithmetic operations and memory read and writes required multi-stage pipelined datapath is required to get the required throughput of 15fps. | Direct camera connection only used in the viewfinder mode, which is a low percentage usage condition. Hence, with an operating speed of 40 MHz the overall battery consumption is low due to low usage. |
Bicubic Interpolation (Separable 4 Point Interpolation)

- By choosing a suitable cubic interpolation polynomial for FIR filter coefficient generation artifacts due to aliasing and unnecessary blurring can be prevented [1]. High quality scaled images can be obtained with this method.

- Two 4-Tap FIR filters required, one for row and one for column dimension. Convolution operation requires 2 multipliers and one adder per color channel. Four image lines need to be stored for column dimension convolution.

- Due to some hardware complexity, this strategy is applicable for High quality QCIF+ and QVGA small format column drivers.

- Integration with column driver only feasible on a deep sub-micron process (< 0.18 um) for efficient silicon real estate utilization.

Depends on the pixel resolution of the image sensor. To avoid jaggedness the scaler and the video datapath should be able to accept video at 15 fps. For a Megapixel(1280x1024) sensor with YCC8 output this translates to bandwidth requirement of about 40 MHz. Due to the arithmetic operations and memory read and writes required multi-stage pipelined datapath is required to get the required throughput of 15 fps.

Direct camera connection only used in the viewfinder mode, which is a low percentage usage condition. Hence, with an operating speed of 40 Mhz the overall battery consumption is low due to low usage.

Table 1

Certain key test images are used for testing and evaluating dithering techniques. Images with gradual and slow gradients suffer from contouring artifacts upon quantization and are ideal candidates for comparative assessment and evaluation of some dithering techniques.

The differentiating factor for these dithering techniques is the size of dither mask and the method used to generate the mask. Such images were used for qualitative evaluation of different dithering techniques and the results are tabulated below in Table 2.

<table>
<thead>
<tr>
<th>Multitoning Strategy</th>
<th>Image Quality</th>
<th>Hardware Requirements</th>
<th>Power Impact</th>
<th>Silicon Real Estate Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered Dithering with a small 16x16 dither mask generated from noise shaping white noise</td>
<td>Depends on the size of the quantization step. For dithering images from 24-bits to 18-bits this table works well. However, for truncation beyond 18-bits the dithering results in granular noise being added to the image. The image also suffers from regular patterns, which are very noticeable to the eye.</td>
<td>Lookup Table for the dither mask and an adder for the dithering process</td>
<td>24-bit Quality is obtainable from an 18-bit Frame Buffer thus allowing almost 25 % reduction of memory silicon real estate. This amounts to a 25 % reduction in memory refresh power for a DRAM frame buffer</td>
<td>24-bit Quality is obtainable from an 18-bit Frame Buffer thus allowing almost 25 % reduction of memory silicon real estate.</td>
</tr>
</tbody>
</table>
Ordered Dithering with 256x256 dither mask with special high frequency characteristics

Image quality is reasonably good for dithering down to 15-bits from 24-bits. Using a bigger dither mask goes a long way in improving image quality and depending on the method used to generate the dither mask (refer [2]) high quality images can be obtained.

Lookup Table for the dither mask and an adder for the dithering process

24-bit Quality is obtainable from an 18-bit Frame Buffer thus allowing almost 38% reduction of memory silicon real estate. This amounts to a 38% reduction in memory refresh power for a DRAM frame buffer architecture.

24-bit Quality is obtainable from a 15-bit Frame Buffer thus allowing almost 38% reduction in memory silicon real estate. This allows for significant reduction in column driver chip length, which enables the column driver to support small TFT displays with a smaller pixel pitch.

Table 2

References

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in medical/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such safety-critical applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

E2E Community Home Page: e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated