LM331

AN-673 2-Way Multiplexed LCD Drive and Low Cost A/D-Converter Using V/F Techniques with COP8 Microcontrollers

Literature Number: SNOA150
ABSTRACT
This application note is intended to show a general solution for implementing a low cost A/D and a 2-way multiplexed LCD drive using National Semiconductor’s COP840C 8-bit microcontroller. The implementation is demonstrated by means of a digital personal scale. Details and function of the weight sensor itself are not covered in this note. Also the algorithms used to calculate the weight from the measured frequency are not included, as they are too specific and depend on the kind of sensor used.

Typical Applications
- Weighing scales
- Sensors with voltage output
- Capacitive or resistive sensors
- All kinds of measuring equipment
- Automotive test and control systems

Features
- 2-way multiplexed LCD drive capability up to 30 segments (4 digit and 2 dot points)
- Precision frequency measurement
- Low current consumption
- Current saving HALT mode
- Additional computing power for application specific tasks

INTRODUCTION
Today’s most popular digital scales all have the following characteristics:
- They are battery powered and use a LCD to display the weight.
- Instead of using a discrete A/D-converter, in many cases a V/F converter is used, which converts an output voltage change of the weight sensor to a frequency change.
- This frequency is measured by a microcontroller and is used to calculate the weight. The advantages of a V/F over an A/D converter are multifold. Only one line from the V/F to the microcontroller is needed, whereas a parallel A/D needs at least 8 lines or even more (National also offers A/Ds with serial output). A V/F can be constructed very simply using National Semiconductor’s low cost, precision voltage to frequency converters LM331 or LM331A. Other possibilities are using Op-amps or a 555-timer in astable mode.

V/F-CONVERSION
Hardware
The basic configuration of the scale described in this application note is shown in Figure 1.
A capacitive or resistive sensor’s weight related capacitance or resistance change is transformed by a 555 timer (in astable mode) to a change of frequency. The output frequency f is determined by the formula:

$$f = \frac{1.44}{(R_a + 2R_b) \cdot C}$$

The output high time is given by:

$$t_1 = 0.693 \cdot (R_a + R_b) \cdot C$$

The output low time is given by:

$$t_2 = 0.693 \cdot R_b \cdot C$$

This frequency is measured using the COP800 16-bit timer in the “input capture” mode. After calculation, the weight is displayed on a 2-way multiplexed LCD. Using this configuration a complete scale can be built using only two ICs and a few external passive components.

For more information on V/F converters generally used with voltage output sensors, refer to the literature listed in the reference section.

Frequency Measurement

The COP 16-bit timer is ideally suited for precise frequency measurements with minimum software overhead. This timer has three programmable operating modes, of which the “input capture” mode is used for the frequency measurement. Allocated with the timer is a 16-bit “autoload/capture register”. The G3-I/O-pin serves as the timer capture input (TIO). In the “input capture” mode the timer is decremented with the instruction cycle frequency (t_c). Each positive going edge at TIO (also neg. edge programmable) causes the timer value to be copied automatically to the autoload/capture register without stopping the timer or destroying its

```plaintext
; THE FOLLOWING "INCLUDE FILE" IS USED
; AS PART OF THE DEFINITION- AND INITIALIZATION PHASE
; IN COP800 PROGRAMS.
; REGISTER NAMES,CONTROL BITS ETC ARE NAMED IN THE
; SAME WAY IN THE COP800 DATA-SHEETS.

; --- COP800 MEMORY MAPPED ---

; *****************************************************************************
; * PORT -, CONFIGURATION - AND CONTROL REGISTERS *
; *****************************************************************************

PORTLD  =  0D0 ; L-PORT DATA REGISTER
PORTLC  =  0D1 ; L-PORT CONFIGURATION
```

The end-value is subtracted from the start-value and the result is restored in RAM locations STALO, STAHI. This value can then be used to calculate the time period of the frequency applied to TIO (G3) by multiplying it with the t_c-time and dividing the result by the number of pulses measured ($N = 255$).

$$T = \frac{(startvalue - endvalue) \cdot t_c}{N}$$
PORTLP = 0D2 ; L-PORT INPUT REGISTER
PORTGD = 0D4 ; G-PORT DATA REGISTER
PORTGC = 0D5 ; G-PORT CONFIGURATION
PORTGP = 0D6 ; G-PORT INPUT REGISTER
PORTD = 0DC ; D-PORT (OUTPUT)
PORTR = 0D7 ; I-PORT (INPUT)

SIOR = 0E9 ; MICROCHIP SHIFT REGISTER
TMRLO = 0EA ; TIMER LOW-BYTE
TMRHI = 0EB ; TIMER HIGH-BYTE
TAULO = 0EC ; T-AUTC REG.LOW BYTE
TAUHI = 0ED ; T-AUTC REG.HIGH BYTE
CNTRL = 0EE ; CONTROL REGISTER
PSW = 0EF ; PSW-REGISTER

; FORM
; ***************************
; * CONSTANT DECLARE *
; ***************************

; --- CONTROL REGISTER BITS ---

S0 = 00 ; MICROWIRE CLOCK DIVIDE BY
; --- BIT 0 ---
S1 = 01 ; MICROWIRE CLOCK DIVIDE BY
; --- BIT 1 ---
IEDG = 02 ; EXTERNAL INTERRUPT EDGE
; POLARITY SELECT (0=RISING
; EDGE, 1=FALLING EDGE)
MSEL = 03 ; ENABLE MICROWIRE FUNCTION
; --- SO AND SK ---
TRUN = 04 ; START/STOP THE TIM/COUNT.
; (1=RUN; 0=STOP)
TEDG = 05 ; TIMER INPUT EDGE POL.SEL.
; (0=RIS. EDGE; 1=FAL. EDGE)
CSEL = 06 ; SELECTS THE CAPTURE MODE
; TSEL = 07 ; SELECTS THE TIMER MODE

; --- PSW REGISTER ---

GIE = 00 ; GLOBAL INTERRUPT ENABLE
ENI = 01 ; EXTERNAL INTERRUPT ENABLE
BUSY = 02 ; MICROWIRE BUSY SHIFTING
IPND = 03 ; EXTERNAL INTERR. PENDING
ENII = 04 ; TIMER INTERRUPT ENABLE
TPND = 05 ; TIMER INTERRUPT PENDING
C = 06 ; CARRY FLAG
HC = 07 ; HALF CARRY FLAG

;**** RAM-DEFINITIONS *****

BCDLO = 000 ; CALCULATED WEIGHT IN BCD
; LOW BYTE
BCDHI = 001 ; CALCULATED WEIGHT IN BCD
; HIGH BYTE
MBUFF0 = 003 ; 7SEGMENT DATA FOR LCD DISPL
; L-PORT
MBUFF1 = 004 ; D-PORT
MBUFF2 = 005 ; G-PORT
OFF1 = 006 ; OFFSET REGISTERS FOR
OFF2 = 007 ; 7 SEGMENT CODE TABLE
OFF3 = 008 ;

STALO = 009 ; START VALUE, LOW BYTE
STAHI = 00A ; START VALUE, HIGH BYTE
ENDO = 00B ; END VALUE LOW BYTE
ENDH = 00C ; END VALUE HIGH BYTE

DIV0 = 00D ; DIVISOR FOR DINBI248 ROUTINE

; 022..02F RESERVED FOR STACK WITH COP820
; 062..06F RESERVED FOR STACK WITH COP840

;**** REGISTER DEFINITIONS ****

COUNT = 0F0
COUNT2 = 0F1
COUNT3 = 0F2
FLAG = OFF ; FLAG REGISTER

;**** BIT DEFINITIONS FLAG REGISTER ****

POUND = 04 ; POUND=1:DISPLAY POUND SEGMENT
; POUND=0:DISPLAY Kg SEGMENT

;**** G-PORT BIT DEFINITIONS *****

BP1 = 05 ; BACKPLANE 1
BP2 = 04 ;BACKPLANE 2

;TIME OF 255 PULSES, USING TIMER INPUT CAPTURE MODE

FMEAS:
;PERIOD TIME=
;(START-ENDVALUE)*tc/255
;DIFFERENCE START-ENDVALUE
;IS STORED IN ENDLG,ENDHI
LD COUNT,#000 ;LOAD PULSE COUNTER (255 PULSES)
LD X,#TALO ;POINT TO AUTO REG. LOW B.
LD B,#TMRLO ;RESET TIMER
LD [B+],#OFF ;REG. WITH FFFFh
LD [B],#OFF
LD B,#CNTRL
LD [B+],#OD0 ;CTRL-REG.: TIMER CAPTURE
;MODE,TIO POS. TRIGGERED,
;START TIMER

RBIT #TPND,[B] ;RESET TIMER PENDING FLAG
JI BIT #TPND,[B]
JP SSTORE
JP L1

SSTORE:
;STORE START VALUE
RBIT #TPND,[B] ;LOAD TIMER CAPTURE REG.
LD A,[X+] ;LOW BYTE
X A,STALO ;STORE IN RAM
LD A,[X-] ;LOAD HIGH BYTE CAPTURE,
;POINT TO LOW BYTE CAPTURE
X A,STAHI ;STORE IN RAM
LD B,#PSW

L256:
IF BIT #TPND,[B] ;RESET TIMER PENDING FLAG
JP DCOU
JP L256

DCOU:
RBIT #TPND,[B];DECREMENT PULSE COUNTER
DRSZ COUNT ;COUNTER = 0 ?
JP L256 ;NO, LOOP 'TIL 255 PULSES
;HAVE BEEN MEASURED

ESTORE:
;STORE END VALUE
LD CNTRL,#00 ;STOP TIMER
LD B,#STALO ;POINT TO START VALUE LOW BYTE
LD A,[X+] ;LOAD END VALUE LOW BYTE
X A,[B] ;LOAD ACCU WITH STARTVALUE LOW BYTE
;& STALO WITH END VALUE LOW BYTE
SC SUBC A,[B] ;SUBTRACT ENDVALUE LOW BYTE
X A,[B+] ;FROM STARTVALUE LOW BYTE
LD A,[X] ;LOAD ACCU WITH ENDVALUE HIGH BYTE
X A,[B] ;LOAD ACCU WITH STARTVALUE HIGH BYTE
;& STALO WITH ENDVALUE HIGH BYTE
SUBC A,[B] ;SUBTRACT ENDVALUE HIGH BYTE FROM
;STARTVALUE HIGH BYTE
X A,[B] ;STORE RESULT IN STAHI
RET
.END

TL/DD/10788-5

TL/DD/10788-6
2-WAY MULTIPLEXED LCD DRIVE

Today a wide variety of LCDs, ranging from static to multiplex rates of 1:64 are available on the market. The multiplex rate of a LCD can be determined by the number of its backplanes (segment-common plate). The higher the multiplex rate the more individual segments can be controlled using only one line. e.g. a static LCD only has one backplane; only one segment can be controlled with one line. A two-way multiplexed LCD has two backplanes and two segments can be controlled with one line, etc.

Common to all LCDs is the fact that the drive voltage applied to the backplane(s) and segments has to be alternating. DC-components higher than 100 mV can cause electrochemical reactions (refer to manufacturer’s spec), which reduce reliability and lifetime of the display.

If the multiplex ratio of the LCD is N and the amount of available outputs is M, the number of segments that can be driven is:

\[S = (M - N) \times N \]

So the maximum number of a 2-way mux LCD’s segments that can be driven with a COP800 in 28-pin package (if all outputs can be used to drive the LCD) is:

\[S = (18 - 2) \times 2 = 32 \]

During one LCD refresh cycle (tx typical values for 1/tx = fx are in the range 30 Hz . . . 60 Hz), three different voltages levels: Vop, 0.5 Vop and 0V have to be generated. The “off” voltage across a segment is not 0V as with static LCDs and also the “on” voltage is not Vop, but only a fraction of it. The ratio of “on” to “off” r.m.s.-voltage (discrimination) is determined by the multiplex ratio and the number of voltage levels involved. The most desirable discrimination ratio is one that maximizes the ratio of \(V_{ON} \) to \(V_{OFF} \), allowing the maximum voltage difference between activated and non-activated states. In general the maximum achievable ratio for any particular value of N is given by:

\[\frac{V_{ON}}{V_{OFF}} \max = \sqrt{SQR((SQR(N) + 1)/(SQR(N) - 1))} \]

SQR – square root

Using this formula the maximum achievable discrimination ratio for a 2-way multiplexed LCD is 2.41, however, it is also possible to order a customized display with a smaller ratio. For ease of operation, most LCD drivers use equal voltage steps (0V, 0.5 Vop, Vop). Thus a discrimination ratio of 2.24 is achieved. When using the COP800 to drive a 2-way multiplexed LCD the only external hardware required to achieve the three voltage steps are 4 equal resistors that form two voltage dividers—one for each backplane (Figure 1). The procedure is to set G4 and G5 to “0” for 0V, to Hi-Z (TRI-STATE®) for 0.5 Vop and to “1” in order to establish Vop at the backplane electrodes. With the COP800 each I/O pin can be set individually to TRI-STATE, “1” or “0”, so this procedure can be implemented very easily.

The current consumption of typical LCDs is in the range of 3 \(\mu A \) to 4 \(\mu A \) (at Vop = 4.5V, refresh rate 60 Hz) per square centimeter of activated area. Thus the backplane and segment terminals can be treated as Hi-Z loads. At high refresh rates the LCD’s current consumption increases dramatically, which is the reason why many LCD manufacturers recommend not using a refresh frequency higher than 60 Hz.

Timing Considerations

As shown in Figures 2 and 3, one LCD refresh cycle tx is subdivided into four equally distant time sections ta, tb, tc and td during which the backplane and segment terminals have to be updated in order to switch a specific segment on or off. Considering a refresh frequency of 50 Hz (tx = 20 ms) ta, tb, tc and td are equal to 5 ms; a COP800 running from an external clock of 2 MHz has an internal instruction cycle time of 5 \(\mu s \) and a typical current consumption of less than 350 \(\mu A \) (at VCC = 3V and room temperature), thus meeting both the requirements of low current consumption and additional computing power between LCD refreshes.

The timing is done using the COP800’s 16-bit timer in the PWM autoload mode. The timer and the assigned 16-bit autoload register are preset with proper values. By setting the TRUN-flag in the CNTRL-register the timer is decrement each instruction cycle. A flag (TPND) is set at underflow and the timer is automatically reloaded with the value stored in the autoload-register. Timer underflow can also be programmed to generate an interrupt.

Segment Control

Figure 2 shows the voltage-waveforms applied to the two backplane-electrodes (a) and the waveform at a segment-electrode (b), which is needed to switch segment A on and segment B off. The resulting voltage over the segments (c and d) is achieved by subtracting waveform (b) from BP1 (segment A) and waveform (b) from BP2 (segment B).

Figure 3 shows the four different waveforms which must be generated to meet all possible combinations of two segments connected to the same driving terminal (off-off, on-off, off-on, on-on).

Figure 4 shows the internal segment and backplane connections for a typical 2-way mux LCD.
FIGURE 2. LCD Waveforms

Typical Backplane Waveforms

BP1 VOP VOP/2 0
BP2 VOP VOP/2 0

\[\text{VOP} = \text{segment on} \]
\[\text{VOP/2} = \text{segment off} \]

\[\frac{1}{f} \] = repetition rate

Resulting Voltages at Segments

BP1 voltage – segment voltage 1
BP2 voltage – segment voltage 1

BP1 voltage – segment voltage 2
BP2 voltage – segment voltage 2

BP1 voltage – segment voltage 3
BP2 voltage – segment voltage 3

\[\text{VOP} = \text{segment on} \]
\[\text{VOP/2} = \text{segment off} \]

Segment = "ON"
Segment = "OFF"

FIGURE 3. Backplane and Segment Voltage Scheme for 1:2 Mux LCD-Drive
FIGURE 4. Customized LCD Display (Backplane and Segment Organization)

LCD Drive Subroutine

The LCD drive subroutine DISPL converts a 16-bit binary value to a 24-bit BCD-value for easier display data fetch. The drive subroutine itself is built up of a main routine doing the backplane refresh and 7 subroutines (SEG0, SEG1, SEG2, SEG3, SEGOUT, TTPND, DISPD). The subroutines SEG0 to SEG4 are used to get the LCD segment data from a look-up table in ROM for time phases ta, tb, tc and td respectively. Subroutine SEGOUT writes the segment data for each time phase to the corresponding output ports. One time phase takes 5 ms, giving a total refresh cycle time of 20 ms (50 Hz). The exact timing is done by using the COP800 16-bit timer in the PWM autoreload mode. In that mode the timer is reloaded with the value stored in the autoreload register on every timer underflow. At the same time the timer pending flag is set. The subroutine TTPND checks this flag in a loop. If the timer pending flag is set, this subroutine resets it and returns to the calling program. Thus a 5 ms time delay is created before the segment and backplane data for the next time phase is written to the output ports. Finally the subroutine DISPD switches off the LCD by setting the backplane and segment connections to “0”. In this digital scale application a frequency measurement is made while the LCD is off. Then the weight is calculated from this frequency and is displayed for 10s. After this 10s the LCD is switched off again and the COP800 is programmed to enter the current saving HALT mode (Iop < 10 µA). A new weight cycle on the digital scale is initiated by pressing a push button, which causes a reset of the microcontroller.

CONCLUSIONS

National Semiconductor’s COP800 Microcontroller family is ideally suited for use with V/F converters and 2-way multiplexed LCDs, as they offer features, which are essential for these types of applications. The high resolution, 3-mode programmable 16-bit timer allows precise frequency measurement in the input capture mode with minimum software overhead. The timer’s PWM autoreload mode offers an easy way to implement a precise timebase for the LCD refresh. The COP800’s programmable I/O ports provide flexibility in driving 2-way multiplexed LCDs directly. The COP800 family, fabricated using M2CMOS technology, offers both low voltage (min VCC of 2.5V) and low current drain.

REFERENCES

APPENDIX—Software Routines

;LOOKUP TABLE FOR CUSTOMIZED 2-WAY MULTIPLEX LCD

. = X'200 ;START LOOK-UP TABLE AT ROM ADDRESS 200
;TIMEPHASE Ta 7 SEGMENT DATA
 .BYTE 004 ;"0" AND ".0"
 .BYTE 00E ;"1" AND ".1"
 .BYTE 008 ;"2" AND ".2"
 .BYTE 008 ;"3" AND ".3"
 .BYTE 002 ;"4" AND ".4"
 .BYTE 001 ;"5" AND ".5"
 .BYTE 001 ;"6" AND ".6"
 .BYTE 00C ;"7" AND ".7"
 .BYTE 000 ;"8" AND ".8"
 .BYTE 000 ;"9" AND ".9"
 .BYTE 00F ;" " AND "."

;SPECIAL SEGMENTS TIMPHASE Ta
 .BYTE 001 ;"LB"
 .BYTE 000 ;"LB 2"
 .BYTE 003 ;"KG"
 .BYTE 002 ;"KG 2"

. = .+ 1
;TIMEPHASE Tb 7 SEGMENT DATA
 .BYTE 002 ;"0"
 .BYTE 00E ;"1"
 .BYTE 003 ;"2"
 .BYTE 00A ;"3"
 .BYTE 00E ;"4"
 .BYTE 00A ;"5"
 .BYTE 002 ;"6"
 .BYTE 00E ;"7"
.BYTE 002 ;"8"
.BYTE 00A ;"9"
.BYTE 00F ;"0"
.BYTE 000 ;"1"
.BYTE 00C ;".2"
.BYTE 008 ;".3"
.BYTE 00C ;".4"
.BYTE 008 ;".5"
.BYTE 000 ;".6"
.BYTE 00C ;".7"
.BYTE 000 ;".8"
.BYTE 008 ;".9"
.BYTE 00D ;".""

.LOCAL

TPEND:
LD B,#PSW

$LOOP:
IFBIT #TPEND,[B]
JP $END
JP $LOOP

$END:
RBIT #TPEND,[B]
LD B,#PORTGD
RET

.LOCAL

. = .+1
;TIMEPHASE TC 7 SEGMENT DATA
.BYTE 00B ;"0" AND ".0"
.BYTE 001 ;"1" AND ".1"
.BYTE 007 ;"2" AND ".2"
.BYTE 007 ;"3" AND ".3"
.BYTE 00D ;"4" AND ".4"
.BYTE 00E ;"5" AND ".5"
.BYTE 00E ;"6" AND ".6"
.BYTE 003 ;"7" AND ".7"
.BYTE 00F ;"8" AND ".8"
.BYTE 00F ;"9" AND ".9"
.BYTE 000 ;" " AND ".""

COPY: ;COPY 2BYTES POINTED TO
;BY B AND E+1 TO RAM
;POINTED TC BY X AND X+1

LD A,[B+]
X A,[X+]
LD A,[B+]
X A,[X+]
RET

.LOCAL
; TIMEPHASE Td 7 SEGMENT DATA
.BYTE 00D ; "0"
.BYTE 001 ; "1"
.BYTE 00C ; "2"
.BYTE 005 ; "3"
.BYTE 001 ; "4"
.BYTE 005 ; "5"
.BYTE 00D ; "6"
.BYTE 001 ; "7"
.BYTE 00D ; "8"
.BYTE 005 ; "9"
.BYTE 000 ; " "
.BYTE 00E ; ".0"
.BYTE 003 ; ".1"
.BYTE 00E ; ".2"
.BYTE 007 ; ".3"
.BYTE 003 ; ".4"
.BYTE 007 ; ".5"
.BYTE 00E ; ".6"
.BYTE 003 ; ".7"
.BYTE 00F ; ".8"
.BYTE 007 ; ".9"
.BYTE 002 ; "; "

; SPECIAL SEGMENTS TIMEPHASE Tb
.BYTE 003 ; "LB"
.BYTE 003 ; "LB 2"
.BYTE 001 ; "KG"
.BYTE 001 ; "KG 2"

; SPECIAL SEGMENTS TIMPHASE Tc
.BYTE 002 ; "LB"
.BYTE 003 ; "LB 2"
.BYTE 000 ; "KG"
.BYTE 001 ; "KG 2"

; SPECIAL SEGMENTS TIMEPHASE Td
.BYTE 000 ; "LB"
.BYTE 000 ; "LB 2"
.BYTE 002 ; "KG"
.BYTE 002 ; "KG 2"

.END

; DISPL:
; INPUT PARAMETER: COUNT2 = RAM REGISTER, WHICH CONTAINS
; THE DISPLAY TIME IN SEC.
; EXAMPLE COUNT2 = 1 -> DISPLAY TIME IS 1SEC.

; LCD DRIVE ROUTINE FOR CUSTOMIZED 2 WAY MULTIPLEX
; LCD
;ROUTINE CONVERTS BCD DATA STORED IN RAM LOCATIONS
;BCDLO, BCDHI INTO LCD OUTPUT DATA STORED AT
;MWBUF0 = LPORT DATA
;MWBUF1 = DPORT DATA
;MWBUF2 = G-PORT DATA (GO,G1 ONLY, OTHER BITS
;STAY UNCHANGED)
;SUBROUTINES INCLUDED:
;SEG0: GETS LCD SEGMENT DATA FOR TIMEPHASE TA
;SEG1: GETS LCD SEGMENT DATA FOR TIMEPHASE TB
;SEG2: GETS LCD SEGMENT DATA FOR TIMEPHASE TC
;SEG3: GETS LCD SEGMENT DATA FOR TIMEPHASE TD
;DISPD: SWITCHES THE DISPLAY OFF AND
;CONFIGURES G-, L- AND D-PORTS
;TPNPD: CHECKS TIMER PENDING FLAG (REFRESH
;RATE GENERATION)
;SEGOUT: OUTPUTS LCD SEGMENT AND BACKPLANE DATA
;SUBROUTINES SEG0... SEG1 MUST FOLLOW DIRECTLY AFTER LOOK-UP
;TABLE, BECAUSE OF THE USE OF THE LAID-INSTRUCTION

LOCAL

SEG0:
LD B,#OFF1 ;POINT TO OFFSET 1 REG.
LD [B+],#000
LD [B+],#000
LD A,#00B

$TWO:
IFBIT #05,BCDHI ;WEIGHT >= 200 POUNDS?
INCA ;YES DISPLAY DIGIT5 ("2")

$POUND:
IFBIT #POUND,FLAG
JP SLPORT
ADD A,#002

$SLPORT:
X A,[B]
LD X,#BCDLO
LD B,#MWBUF0
LD A,[X]
AND A,#00F ;ELIMINATE DIGIT1 BITS
ADD A,OFF2
LAID ;GET DIGIT1 DATA
X A,[B] ;SAVE DIGIT1 DATA
;IN MWBUF0
LD A,[X+]
AND A,#0F0 ;ELIMINATE DIGIT1 BITS
SWAP A
ADD A,OFF1 ;ALWAYS DISPLAY DECIMAL POINT
LAID ;GET DIGIT1 DATA
SWAP A
OR A,[B] ;STORE DIGIT1 AND
X A,[B+] ;DIGIT2 DATA IN MWBUF0
$DPORT:
 LD A, [X]
 IEBIT #04, BCDHI
 JP $ADD1
 AND A, #00F
 ADD A, OFF2 ;DISPLAY NO LEADING ZERO
 JP $GET

$ADD1:
 AND A, #00F
 ADD A, OFF1 ;DISPLAY "1" (DIGIT4)

$GET:
 LAID ;GET DIGIT3 DATA
 X A, [B+] ;STORE DIGIT3 DATA IN
 ;MWBUF1

$GPORT:
 LD A, OFF3
 LAID ;GET DIGIT5 ("2") AND SPECIAL
 ;SEGMENT DATA
 OR A, #0FC ;SET BITS 2...7 TO 1
 X A, [B] ;SAVE DATA IN MWBUF2
 RET

SEG1:
 LD B, #OFF1
 LD [B+], #01B
 LD [B+], #010
 LD A, #056
 JP $TWO

SEG2:
 LD B, #OFF1
 LD [B+], #030
 LD [B+], #030
 LD A, #05A
 JP $TWO

SEG3:
 LD B, #OFF1
 LD [B+], #04B
 LD [B+], #040
 LD A, #05E
 JP $TWO

 .LOCAL

DISPL:
 IEBIT #POUND, FLAG
 JP MULT2
 JP LDT

MULT2: ;CALCULATE WEIGHT IN POUNDS
 LD B, #BUF12LO ;(Multiplication of kg * 2.2)
 LD [B+], #22
LD X,#STALO
JSR MULBI168
LD B,#BUF12LO
JSR COPY
LD STAH+1,#00
LD DIVO,#10
JSR DIVB1248

LDT:
JSR BINBCD16 ;CONVERT BINARY TO BCD WEIGHT
LD COUNT,#50 ;REPEAT DISPLAY LOOP 50 TIMES
 ; (=1 SEC DISPLAY TIME)
LD B,#TMPLO
LD [B+],#0E8 ;LOAD TIMER WITH 1000(03E8h)
LD [B+],#003 ; (=50 Hz LCD REFRESH AT tc=5us)
LD [B+],#0E8 ;LOAD AUTOREG. WITH 1000
LD [B+],#003
LD [B+],#090 ;CNTRL-REG.:"TIMER WITH AUTO-
 ;LOAD": MODE, START TIMER
LD [B+],#010 ;PSW-REG.:RESET TPND FLAG

DISP1:
JSR SEGO ;GET 7-SEG. DATA FOR REFRESH
 ;TIMEPHASE Ta
JSR TTPND ;TEST TIMER PENDING FLAG
 ;BACKPLANE REFRESH Ta

TP0:
SBIT #BP1,[B] ;POINT TO G-CONFIG.-REG.
LD A,[B+] ;POINT TO G-DATA REG.
RBIT #BP2,[B]
SBIT #BP1,[B]
LD A,[B+] ;POINT TO G-DATA REG.
RBIT #BP2,[B]
JSR SEGOUT ;SEGMENT DATA OUT
JSR SEG1 ;GET 7-SEG. DATA FCR Tb
JSR TTPND

TP1:
SBIT #BP2,[B]
LD A,[B+] ;POINT TO G-CONF.-REG.
RBIT #BP1,[B]
SBIT #BP2,[B]
LD A,[B+] ;POINT TO G-DATA REG.
RBIT #BP1,[B]
JSR SEGOUT
JSR SEG2 ;GET 7-SEG. DATA FOR Tc
JSR TTPND

TP2:
RBIT #BP1,[B] ;POINT TO G-CONFIG.-REG.
LD A,[B+] ;POINT TO G-DATA-REG.
RBIT #BP2,[B]
SBIT #BP1,[B]
LD A,[B+] ;POINT TO G-DATA-REG.
RBIT #BP2,[B]
JSR SEGOUT
JSR SEG3
JSR TTPND

TP3:
RBIT #BP1,[B]
RBIT #BP2,[B]
LD A,[B+]
RBIT #BP1,[B]
SBIT #BP2,[B]
JSR SEGOUT
DRSZ COUNT
JP DISP1
LD COUNT,#50
DRSZ COUNT2 ;10SEC OVER?
JP DISP1 ;NO, DISPLAY WEIGHT
JSR DISPD ;YES ROUTINE FINISHED

DISPD: ;SWITCH DISPLAY OFF
LD B,#PORTLD
LD [B+],#000 ;OUTPUT 0 TO L PORT
LD [B+],#00 ;L-PORT = OUTPUT PORT
LD B,#PORTGD
LD [B+],#000 ;OUTPUT 0 TO G OUTPUTS
LD [B+],#037 ;G0..G2,G4,G5=OUTPUTS
LD PORTD,#000 ;OUTPUT 0 TO D-PORT
RET

SEGOUT:
LD B,#MWBUFF0
LD A,[B+];POINT TO MWBUF1
X A,PORTLD ;OUTPUT 7 SEG. DATA IN
LD A,[B+];POINT TO MWBUF2
X A,PORTD ;OUTPUT MWBUF1 TO D-PORT
LD A,[X]
AND A,[B];AND MWBUF2 WITH PORTGD
;LEAVE BITS 2...7 UNCHANGED
X A,[B];STORE RESULT (A') IN
;MWBUF2,LOAD A WITH
;ORIGINAL MWBUF2 VALUE
AND A,#003 ;AND 007 WITH ORIGINAL
;MWBUF2 (A''),SET BITS 0,1 TO
;CORRECT VALUE
OR A,[B];OR A' WITH A'',RESTORE ORIGINAL
;G2...G7 BITS
X A,[X];OUTPUT RESULT TO G-PORT
RET
; 16 BIT BINARY TO BCD CONVERSION
; THE MEMORY ASSIGNMENTS ARE AS FOLLOWS:

; BINLO: RAM ADDRESS BINARY LOW BYTE
; BCDLO: RAM ADDRESS BCD LOW BYTE
; COUNT: RAM ADDRESS SHIFT COUNTER (0F0...0FB, 0FF)

; BCD NUMBER IN BCDLO, BCDLO+1, BCDLO+2
;
; MEMORY ADDRESS M(BINLO+1) M(BINLO) M(BCDLO+2) M(BCDLO+1) M(BCDLO)
; DATA BINARY HB BINARY LOW BYTE BCD HB BCD BCD LOW BYTE
;

BINLO = STALO
#LOCAL
$BCDT = (BCDLO + 3) & 0F
$BIN = (BINLO + 2) & 0F

; BINC
LD COUNT,#16 ; LOAD CONTROL REGISTER WITH
 ; NUMBER OF LEFTSHIFTS TO
 ; EXECUTE
LD B,#BCDLO ; LOAD BCD-NUMBER LOWEST BYTE
 ; ADDRESS

$BCD: ; CLEAR BCD RAM-REGISTERS
LD [B+],#00
IFBNE #$BCD
JP $BCD

$LSH: ; LEFTSHIFT BINARY NUMBER
LD B,#BINLO
RC

$LSHFT:
LD A,[B]
ADC A,[B] ; IF MSB IS SET, SET CARRY
X A,[B+]
IFBNE #$BIN
JP $LSHFT
LD B,#BCDLO

$BCDA: ; ADD CORRECTION FACTOR
LD A,[B]
ADD A,#066 ; LEFTSHIFT BCD NUMBER
 ; (BCD=2**WEIGHT OF
 ; BINARY BIT(=CARRY BIT))
 ; DECREMENT SHIFT COUNTER
 ; DECIMAL CORRECT ADDITION
DCOR A

X A,[B+]
IFBNE #$BIN
JP $BCDA
DRSZ COUNT
JP $LSH
RET

#LOCAL
; BINARY DIVIDE 24BIT BY 8BIT (Q=Y/Z)
; YL: LOW BYTE RAM ADDRESS DIVIDEND
; ZL: LOW BYTE RAM ADDRESS DIVISOR
; CNTR: RAM ADDRESS SHIFT COUNTER (0F0...0FB,0FF)

; QUOTIENT AT RAM LOCATIONS YL..YL+2
; REMAINDER AT YL+3
; QUOTIENT IS ALL '1's IF DIVIDE BY ZERO, REMAINDER
; THEN CONTAINS YL

; THE MEMORY ASSIGNMENTS ARE AS FOLLOWS:
; M(YH+1) M(YH) M(YL+1) M(YL)
; 0 Y(HIGH BYTE) Y Y(LOW BYTE)
;--
; M(ZL)
; Z

; ROUTINE NEEDS 1.21ms FOR EXECUTION AT tc=1us

ZL = DIV0
YL = STALO
CNTR = COUNT
.LOCAL $YH = YL+2
$BTY = ($YH&00F)+2 ;PARAMETER FOR "IFBNE"-INSTR.

DIVBI248:
LD CNTR,#018 ;INITIALIZE SHIFT COUNTER
LD B,#$YH+1 ;FOR 4 COUNTS
LD [B],#000 ;PUT 0 IN M(YH+1)
LD X,#$YH+1

$LSHFT:
LD B,#YL ;LEFT SHIFT DIVIDEND
RC

$LUP:
LD A,[B]
ADCB A,[B]
X A,[B+1]
IFBNE #$BTY
JP $LUP
LD B,#ZL
IFC
JP $SUBT

$TSUBT: ;SUBTRACT AND TEST
;SUBTRACT Z FROM M(YH+1,YH+2)
SC
LD A,[X]
SUBCB A,[B]
IFNC
JP $TEST
$SUBT:

; SUBTRACT Z FROM M(YH+1,YH+2)
LD A,[X]
SUBC A,[B]
X A,[X]
LD B,#YL
SBIT #0,[B]

$TEST:

DRSZ CNTR ; 24 SHIFTS EXECUTED?
JP $LSHFT ; NO, LEFT SHIFT DIVIDEND
RET

; BINARY MULTIPLIES A 16BIT VALUE (X1)
; WITH A 8BIT VALUE (X2): M = X1 * X2

; XIL: RAM ADDRESS X1 LOW BYTE
; X2L: RAM ADDRESS X2
; COUNT RAM ADDRESS SHIFT COUNTER

; M IS STORED AT RAM ADDRESSES X2L...X2L+2

; THE MEMORY ASSIGNMENTS ARE AS FOLLOWS:
; MEMORY
; M(X2L+2) M(X2L+1) M(X2L)
; DATA
; 0 0 X2

; -------------------------------
; MEMORY
; M(X1L+1) M(X1L)
; DATA
; X1(H.B.) X1(LOW BYTE)

; THE EXECUTION TIME FOR THE ROUTINE AT tc=1us IS 240us

; LOCAL

MULBI168:

LD COUNT,#9 ; PRESET SHIFT COUNTER
LD [B+],#00 ; PRESET X2L+1,X2L+2 WITH ’0’
LD [B],#00
RC

$LOOP:

LD A,[B] ; RIGHT SHIFT
RRCA
X A,[B-]
LD A,[B]
RRCA
X A,[B-]
LD A,[B]
RRCA
X A,[B+]

TL/DD/10788–20
LD A,[B+] ;INCREMENT B POINTER
IFNC ;MOST SIGN. BIT OF X2 SET?
JP $TEST ;NO, TEST SHIFT COUNTER
RC ;YES, RESET CARRY
LD A,[B-] ;POINT TO 2nd HIGHEST BYTE
 ;OF RESULT
LD A,[X+] ;DO WEIGHTED ADD
ADC A,[B]
X A,[B+]
LD A,[X-]
ADC A,[B]
X A,[B]

$TEST:
DRSZ COUNT ;8 RIGHT SHIFTS EXECUTED?
JP $LOOP ;NO, SHIFT
RET ;YES, MULIPLICATION FINISHED

.LOCAL
.END
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such safety-critical applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
- Audio: www.ti.com/audio
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DLP® Products: www.dlp.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- OMAP Mobile Processors: www.ti.com/omap
- Wireless Connectivity: www.ti.com/wirelessconnectivity

Applications
- Communications and Telecom: www.ti.com/communications
- Energy and Lighting: www.ti.com/energy
- Industrial: www.ti.com/industrial
- Medical: www.ti.com/medical
- Transportation and Automotive: www.ti.com/automotive
- Video and Imaging: www.ti.com/video

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated