PI Bus

HISTORY
Throughout the 70’s and early 80’s the typical backplane was driven by standard TTL logic parts with tristateable outputs such as 54/74XX240 and 245. For design purposes these busses were modeled as lumped capacitances and transmission line effects were ignored because the bus data rates were generally not fast enough to require designers to be concerned with transmission line effects of the backplane.

With the lower bus speeds there was sufficient bus settling time for reflections to dampen, and the signals to stabilize close enough to steady state to avoid problems. If a bus was heavily loaded and attempts were made to run the bus faster than 10 MHz, errors in data were frequently seen due to line reflections causing line voltage levels to transition through threshold more than once for a single transition of the buffer input. And as backplane densities increased, loading from the transceivers became so great that this increased the problem of driving the bus quickly and error free.

With today’s higher bus data rates it has become imperative that the transmission line characteristics of the backplane be accounted for in backplane analysis. By doing so it becomes apparent that there may be better ways to drive backplanes than with traditional TTL family logic.

To solve some of the inherent problems with running densely loaded busses, the PI Bus structure was developed. PI Bus (parallel interface bus) was developed by IBM, Unisys and TRW for the VHSIC 2.2 Interoperability program. PI Bus has since been adopted by the Joint Integrated Avionics Working Group (JIAWG) section of SAE.

TRANSMISSION LINE PHYSICS
Several problems must be overcome to run a faster, more heavily loaded bus. When the bus propagation delay plus settling time decreases below about 100 ns the backplane must be considered as a transmission line. If the backplane is densely populated the problem of running it at high data rates is exacerbated.

\[Z_0 = \left(\frac{R + j\omega L}{G + j\omega C} \right)^{1/2} \]

For high frequency, the R and G terms become insignificant due to the increases in the \(w \) terms,

\[w = 2 \pi f \]

and the equation simplifies to

\[Z_0 = \left(\frac{L}{C} \right)^{1/2} \]

where \(L \) is in units of inductance per unit length and \(C \) is in units of capacitance per unit length.

FIGURE 1.

EFFECTS OF CAPACITIVE LOADING ON BUS
Values for \(Z_0 \) can be calculated from the physics of the backplane construction. For a typical PI Bus epoxy-glass backplane the value for \(Z_0 \) is about 65Ω. The basic equation describing the impedance of a loaded bus is

\[Z_1 = \frac{Z_0}{\left(1 + C_1/C \right)^{1/2}} \]

where \(C_1 \) is the additional load added to the bus by modules, connectors and connector mounting vias. So as the capacitive load of the modules increases, the impedance of the bus decreases. As the impedance of the bus decreases, the current required to drive the bus between state changes in a given time period increases \((I = V/Z)\). The equation for the propagation delay of a signal on an unloaded transmission line is

\[T_{PD} = \frac{\ell}{(L/C)^{1/2}} \]

where \(\ell \) = length of the bus.

For a loaded bus,

\[T_{PD} = T_{PD} \left(1 + C_1/C \right)^{1/2} \]

describes the propagation delay on a transmission line.

From the equation for the loaded bus, it is obvious that as the capacitive loading of the bus increases, the propagation delay for a given length of bus increases. As this time increases bus settling time increases, and hence affects how fast the bus may be operated. So a bus transceiver which had low capacitive loading would improve bus operation in several ways. A low capacitive transceiver would raise the value of \(Z_1 \), and hence the drive current requirements for a given performance would be reduced, the propagation delay for a given length of backplane would be reduced, and any bus settling time required would also be reduced.

OUTPUT \(V_{OH} \) SWING
The standard TTL swing for an output is from 0.2V to \(V_{CC} - 2 \) diodes (for CMOS 0V to \(V_{SS} \)). For a bipolar device, this swing could be as much as from 0.2V to 4.1V. The smaller
this swing between high and low, the less charge which must
be moved in any given time to effect a change of state. So
from the standpoint of power usage, smaller in this case
would be better.
PI Bus developed as a bus to address both these conclu-
sions in a manner similar to Future Bus. The bus side out-
puts are open Schottkys, and the bus is terminated on both
ends by a resistor to a voltage source with limits of 1.9V to
2.1V (Figure 2). The resistors used to terminate the bus may
be from 30Ω to 40Ω. By terminating the bus in this way, \(Z_0 \)
matches 40Ω termination with no loads on the bus, but in-
cluding loading from raw backplane plus vias and mating
connectors, and a 30Ω termination matches a fully loaded PI
bus backplane) the bus is somewhat tuned to the \(Z_0 \) of the
bus so that reflections can be minimized. By terminating
the bus to a maximum of 2.1V, the maximum voltage swing on
the bus will be from the \(V_{OL} \) minimum spec of 0.4V to the
maximum 2.1V. Thus the voltage swing for the PI Bus trans-
ceiver would be 1.7V versus the 3.9V for a standard bipolar
transceiver.

OUTPUT CAPACITANCE OF TRANSCEIVER

In order to decrease the capacitive loading of each trans-
ceiver, Schottky diode outputs are used, and are reverse bi-
ased when not active low. The PI Bus driver output is shown
in Figure 3. When the output is in a high state both the output
Schottky diode and the collector-substrate diode of Q1 are
reverse biased. By reverse biasing both the Schottky diode
junction and the collector-substrate junction the parasitic ca-
pacitive loading of the bus driving output can be greatly de-
creased. The following equation gives an approximation of
the impact reverse biasing has upon junction capacitance:
\[
C_J = \frac{C_{J0}}{1 + \frac{V_d}{V_0}}^{1/2}
\]
where \(C_{J0} \) equals the capacitance of the diode junction un-
der unbiased conditions, and \(V_d \) equals the reverse biased
voltage of the diode junction. \(V_0 \) is the built-in zero bias po-
tential across a diode junction, and would be on the order of
0.7V. So, by reverse biasing the cathode of both D1 and Q1,
their parasitic capacitive loading on the bus is decreased. If
the bus were at 2.0V, and \(V_{CC} \) was at 5V, \(C_{J0} \) would be
decreased by a factor of 2.1. Then of course, \(C1 \) and \(C2 \) are in
series, so their total capacitance would be decreased ac-
cording to the following equation:
\[
C_T = C_P + \left(\frac{C_1 (C_2 + C_3)}{C_1 + C_2 + C_3} \right)
\]
The capacitance of C3 (from D3) is basically negligible in
comparison to C1 because it is approximately 0.5% the area
Q1. The package capacitance \(C_P \) may vary from 0.3 pF to
1.5 pF, depending upon the package and the pin location on
the package. The other capacitive loading on each bus pin
would be the base-collector and base-emitter capacitance of
Q7 (Figure 8), which connects to the anode of D1. For a typi-
cal TTL part (Figure 5 and Figure 6), the capacitive loading of
the output would be primarily C3 because C6 is in series with
C7 and the parallel combination of C8 and C9. For Q4 and
Q5 being about the same size devices, the capacitive load-
ing of the TTL circuit would be several times larger than that
of the Schottky terminated circuit.
PRECISION THRESHOLD

In order to handle the smaller output swing on the bus, it is necessary to use a more precise threshold circuit on the bus receiver input. Figure 7 is a typical TTL input buffer. The threshold set by this type of circuit varies considerably with temperature, and typically ranges from about 1V at high temperatures to about 1.8V at low temperatures. Such movement could not be tolerated with a bus swing which could be as small as from 1.15V to 1.9V. The circuit shown in Figure 8 is used on PI Bus transceivers to set a more precise threshold. A voltage reference with a very small VCC and temperature dependence is placed on the chip to establish a precision threshold for the PI Bus to BIU input buffer. By using a differential pair with one of the pair controlled by the reference voltage, the threshold can be maintained within a 150 mV window centered at 1.52V.

OUTPUT RAMPS AND NOISE IMMUNITY

Ramped outputs have been touted as the solution to problems of bus reflections and crosstalk. The amount of ramp time put into rise and fall times directly related to the propagation delays of a transceiver, so longer ramps require longer delay times. An important question to ask is how much of a ramp buys what degree of decreased bus settling time. Many TTL parts have peak ramps of about 2V/μs. This rate of ramp certainly seems to increase bus settling times. The PI Bus transceiver will have a typical ramp rate of about 0.5V/μs.

Having some amount of noise rejection on the bus receiver input allows the bus buffer input to ignore small excursions above or below threshold without affecting the data being transmitted to the BIU. However the greater the amount of noise immunity, the greater the propagation delay on the path from the bus to the BIU. The PI Bus transceiver offers a compromise between noise immunity and prop delays with typically 4 ns of pulsewidth protection measured at 1.5V for a 1 to 2 volt input.

SUBMICRON BIU PROTECTION

To accommodate future submicron BIU processing, the PI Bus transceivers offer a feature for limiting the output V_{OH} excursion to the BIU. The V_x pin on the chip can be used as a clamp voltage to limit the V_{OH} of the BIU side output. The basic propagation delays on the transceiver with the exception of the BIU side low to high ramp rate are unaffected because the remainder of the transceiver is still powered by the normal VCC pin. Only the BIU V_{OH} is controlled by the V_x pin. The Figure 9 schematic shows how the V_x voltage sets the output V_{OH}.

FIGURE 5. Typical TTL Input Buffer

FIGURE 6. Precision Threshold Circuit

FIGURE 7. Typical TTL Input
LOW POWER

Many applications of Pi Bus are designed with a redundant bus, and as such always have a full set of transceivers in the inactive mode. And in addition, on the active bus there may be 15 inactive (for a 16 drop bus) transceivers with one active transceiver. So in order to lower the power requirements for the Pi Bus backplane application the National Pi Bus transceiver, the DS1776, was designed using BiCMOS in order to take advantage of the power savings possible with the use of CMOS in appropriate portions of the circuit.

A pure bipolar transceiver would have an I_{CC} inactive specification of about 100 mA. By using a BiCMOS process it was possible to design a Pi Bus transceiver with an I_{CC} inactive of 35 mA.

BIPOLAR vs CMOS vs BiCMOS TECHNOLOGY

A full bipolar transceiver could be built to provide excellent performance in most areas with the exception of power consumption in both the active and inactive modes. A pure CMOS part could be designed with a much lower I_{CC}, but it would have the following drawbacks. It would be slower than a bipolar part, no Schottky diode would be available to construct a low capacitance output with limited swing, and stable CMOS voltage references which have a reasonable silicon area are non-existent, so setting a precise input voltage threshold would be difficult.

By making judicious use of bipolar and CMOS circuits where each is appropriate, it was possible to design a Pi Bus transceiver with an I_{CC} inactive of typically 35 mA and yet maintain the full features which make Pi Bus a clean and quiet bus to run.

REFERENCES

JIAWG Pi-Bus Specification — J89-N1A Draft

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use. Buyers further represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use.

Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications.

Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such automotive applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>Apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
<td>www.ti.com/consumer-apps</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated