ABSTRACT

A SPICE macromodel that captures the “personality” of Texas Instruments CMOS op-amps has been developed. The salient features of the macromodel are a MOSFET input stage, Miller compensation, and a current-source output stage. A description of the model is provided along with correlation to actual device behavior.
1 Introduction

Recently, there has been a major thrust in lowering power dissipation and supply voltages for analog system level design. In response to this, Texas Instruments has developed a family of CMOS op-amps that features rail-to-rail output swing, extremely low input bias current (10 fA typ.), single supply operation, low-power consumption, and an input common-mode range that includes the negative supply rail [1]. Due to the unique topology that makes these features possible, a new SPICE macromodel was required in order to achieve accurate simulation results.

2 Macromodeling Philosophy

The philosophy used in creating this macromodel was a desire to design a model that would accurately simulate the typical behavior of a CMOS op-amp while executing much faster than a device level model (commonly referred to as a micromodel). The “personality” of an op-amp can be captured by individually hand crafting and thoroughly testing each model to ensure that it accurately simulates the behavior of the real device.

3 CMOS Macromodel Input Stage

The input stage performs several important functions including non-linear input transfer characteristics, offset voltage, input bias currents, second pole, and quiescent power supply current. The heart of the input stage consists of a differential amplifier that is made up of two simplified MOSFET models [2]. Input common-mode range can be modeled by properly setting the zero bias threshold voltage \(V_{TO} \) in the MOSFET model. In the case of the LMC6484, which has rail-to-rail input common-mode range, \(V_{TO} \) is left at its default value of zero. Offset voltage is modeled with an ideal voltage source, \(E_{OS} \), while input bias/offset currents are modeled by properly setting the leakage currents on the input protection diodes DP1–DP4. Quiescent current is modeled with the combination of \(I_2 \) and the \(R_8-R_9 \) series resistors. As the supply voltage increases, the current through \(R_8 \) and \(R_9 \) increases, effectively simulating that behavior in the real device. Resistors \(R_8 \) and \(R_9 \) also act as a voltage divider and establish a common-mode voltage \(V_{CM} \) for the model directly between the rails. If the supply rails are symmetrical, ±5 V, node 49 will be at 0 V. Voltage-controlled voltage-source, \(EH \), measures the voltage across \(R_8 \) and subtracts an equal voltage from the positive supply rail to provide a stiff point between the rails (node 98) to which many other stages in the model are referenced. Voltage-controlled current-source \(G_0 \) and resistor \(R_0 \) model the gain of the input stage. The signal is then passed to the frequency shaping stages for further conditioning.

4 Frequency Shaping Stages

In keeping with the philosophy of providing a macromodel that is as accurate as possible, it has been determined that the model must be capable of easily accommodating as many poles and zeros that are necessary to precisely shape the magnitude and phase response of the model [3]. This is accomplished with telescopic frequency shaping stages that each have unity DC gain, making it easier to add poles and zeros without changing the low-frequency gain of the model.

5 Common-Mode Stage

Common-mode gain is modeled with a common-mode zero stage whose gain increases as a function of frequency. A voltage-controlled current-source, \(G_4 \), is controlled with a polynomial equation that adds the voltage at each input (nodes 1 and 2) and divides the sum by two. This result is the input common-mode voltage. The DC gain of the stage is set to the reciprocal of the CMRR for the amplifier. An inductor, \(L_2 \), increases the gain of the stage at 20 dB/decade to model the roll-off of CMRR that occurs in most amplifiers. The output of the common-mode zero stage (node 16) is reflected to the \(E_{DS} \) source to provide an input-referred common-mode error.

AN-856 A SPICE Compatible Macromodel for CMOS Operational Amplifiers

Copyright © 1992–2013, Texas Instruments Incorporated
Table 1. Characteristics of Texas Instruments CMOS Operational Amplifiers

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Rail-to-rail output swing, ultra-low input bias current (10 fA typ.), low drift (1.3 µV/°C), single supply operation, input common-mode range includes ground, low power consumption, and high voltage gain.</td>
<td></td>
</tr>
<tr>
<td>LMC660</td>
<td>Drives 600Ω load, high bandwidth (1.4 MHz), high slew rate (1.1 V/µs), comes in quad and dual (LMC662).</td>
</tr>
<tr>
<td>LPC660</td>
<td>Low power (215 µW/amp), comes in quad and dual (LPC662).</td>
</tr>
<tr>
<td>LMC6044</td>
<td>Low power (70 µW/amp), comes in quad, single (LMC6041) and dual (LMC6042).</td>
</tr>
<tr>
<td>LMC6062</td>
<td>High precision dual (V_{OS} = 100 µV), low power (80 µW/amp).</td>
</tr>
<tr>
<td>LMC6082</td>
<td>High precision dual (V_{OS} = 150 µV), drives 600 Ω loads, high bandwidth (1.3 MHz).</td>
</tr>
<tr>
<td>LMC6484</td>
<td>Rail-to-rail input common-mode range, operates on 3 V single supply, drives 600Ω loads, high bandwidth (1.3 MHz), comes in quad and dual (LMC6482).</td>
</tr>
</tbody>
</table>

Figure 1. Texas Instruments CMOS Op-Amp Macromodel

6 Output Stage

After the last frequency-shaping stage, the intermediate signal is sent to the output stage. The output stage performs several important functions including dominant pole, slew rate limiting, dynamic supply current, short-circuit current limiting, the balance of the open-loop gain, output swing limiting, and output impedance. The output stage of the macromodel incorporates several new innovations in order to accommodate the unique topology of Texas Instruments CMOS op-amps. To understand the unique features of this topology, a description of the actual amplifier output stage is in order.

The main feature of TI's CMOS amplifiers is that the output can swing rail-to-rail. This is accomplished by removing the traditional output buffer and taking the output directly from the integrator. The output portion of the integrator is a common-source complementary push-pull gain stage that functions as a current source. Depending on load resistance, the output stage can have a considerable amount of gain. However, since the internal compensation capacitor is referenced to the output node, the slew rate does not significantly change as the output is loaded. Also, loading the output will reduce the open-loop gain of the amplifier so that the first pole will increase in frequency in order to maintain the gain-bandwidth product of the amplifier.
In the model, Miller compensation was used to obtain an additional degree of freedom in setting the open-loop gain, slew rate, and first pole. The slew rate is defined by:

$$SR = \frac{1}{C3}$$

(1)

while the first pole is determined with the equation:

$$f_{p1} = \frac{1}{2\pi x R5 x C3 x (1+A_{VOUT})}$$

(2)

where A_{VOUT} is the gain of the output stage. Note that the slew rate can be set with $C3$ while the first pole can be independently set with the gain of the output stage. A gain stage consisting of a voltage-controlled current-source $G1$ and resistor $R5$ takes the signal from the last frequency-shaping stage and amplifies it by the balance of the open-loop gain ($G1 \times R5 = A_{VOL} - A_{VIN} - A_{VOUT}$). A voltage clamp made of $D1$, $V2$, $D2$, and $V3$ limits the drive to the output current-source, $G6$, to provide short-circuit current limiting. Since the output stage has gain, output swing limiting is performed at the output node with a clamp consisting of $D5$, $V4$, $D6$, and $V5$. A resistor, $R17$, models the slight degradation in output swing as the amplifier is loaded.

7 Dynamic Supply Current

A behavior that is often not included in op-amp macromodels is dynamic supply current. If the output of the model is an ideal current source, the simulated output current of the model appears to come from nowhere, i.e., the supply currents do not change. This apparent violation of the second law of thermodynamics has been solved with diodes $D7$–$D8$, current sources $F5$–$F6$, and associated circuitry. Since it is important to keep non-linear devices, such as diodes, out of the signal path, only an ideal ammeter, $VA8$, was inserted in the output driver to sense the sinking or sourcing of output current. Current-controlled current-source, $F5$, mirrors the current sensed by $VA8$ and forces an equal current through either $D7$ or $D8$ depending on its polarity. If current is being sourced into the load, the current flows from the positive rail through $E1$, $VA8$, and $G6$ to the output node and no supply current correction is necessary. However, if the output stage is sinking current from the load, the current flows from the output node up through $G6$, $VA8$ and $E1$ into the positive rail. To compensate for this, $F5$ forces an equal current through $D7$ and ammeter $VA7$. This current is then mirrored to current-source $F6$ that pulls an equal amount of current out of the positive rail and forces it into the negative rail. Therefore, if the output stage is sourcing current, it appears to come from the positive rail, whereas current that is sinking from the load appears to go into the negative rail. The net result of all these extra devices is an output stage that closely models the behavior of the real amplifier.

8 Simulation Accuracy

To ensure the accuracy of the macromodel, the simulation results are compared to lab data taken from an actual device. Figure 2 shows a typical voltage follower transient response test circuit and Table 2 shows a SPICE netlist [4] for simulating the small-signal transient response of the LMC6484. Notice that the simulated response shown in Figure 4 compares quite closely with the actual response shown in Figure 3 with the correct amount of over-shoot and frequency of ringing.

Figure 2 and Figure 6 demonstrate the rail-to-rail input and output capabilities of the actual LMC6484 and the model, respectively. The amplifier was configured as a voltage follower and powered from a 3 V single supply. Then, a 3 V_{pp} square-wave was applied to the non-inverting input. The amplifier is clearly capable of handling this rail-to-rail input and reproducing it on the output while driving a 4.7 kΩ load. The simulation results show that the macromodel accurately models the slew rate and output swing of the amplifier.
Note: It is very important to include a model of the scope probe on the output of the amplifier to obtain reasonable results from the simulation.

Figure 2. Non-Inverting Amplifier ($A_v = +1$)

Table 2. Non-Inverting Amplifier Netlist to Simulate the Small-Signal Response of the LMC6484 [4]

* LMC6484 S.S. Pulse Response. V(6)
* Cload = scope
* XAR1 3 6 7 4 6 LMC6484
VP 7 0 7.5V
VN 4 0 −7.5V
VIN 3 0 PULSE (−1V .1V 3U 20N 20N 5U)
Rout 6 0 10MEGohm
Cout 6 0 8.7pF
.LIB CMOSOA.LIB
.TRAN/OP .1N 10U
.PROBE
.END

Figure 3. LMC6484 Small-Signal Transient Response
Figure 4. Simulated Small-Signal Transient Response
LMC6484 S.S. Pulse Response (V(6) C_{LOAD} = scope)

Note: This image demonstrates the rail-to-rail input/output capabilities of the LMC6484 while powered from a 3 V single supply and driving a 4.7 kΩ load. Do not try this with an ordinary op-amp.

Figure 5. Large-Signal Transient Response

Figure 6. LMC6484 Simulated Large-Signal Transient Response
Conclusion

An accurate SPICE macromodel has been developed that captures the “personality” of Texas Instruments CMOS operational amplifiers. The macromodel includes effects such as rail-to-rail output swing, input common-mode range, MOSFET input stage transfer characteristics, accurate frequency and transient response, slew rate and output short-circuit current. The model is not capable of simulating PSRR, thermal effects, or noise at this time.

Since the macromodels are much less complex and have fewer p-n junctions than a transistor level micromodel, simulation speed is much faster. For example, an LMC6484 macromodel simulation executed 34 times faster than its transistor level model. With accurate macromodels, the designer can quickly determine the dominant effects of a circuit and explore effects that are difficult to obtain with lab bench evaluation.

References

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
<th>Applications</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td>Automotive and Transportation</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td>Consumer Electronics</td>
<td>www.ti.com/consumer-apps</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated