AN-952 Low Cost A/D Conversion Using COP800

Literature Number: SNOA328
Low Cost A/D Conversion Using COP800

INTRODUCTION
Many microcontroller applications require a low cost analog to digital conversion. In most cases the controller applications do not need high accuracy and short conversion time. This appnote describes a simple method for performing analog to digital conversion by reducing external elements and costs.

PRINCIPLES OF A/D CONVERSION
The principle of the single slope conversion technique is to measure the time it takes for the RC network to charge up to the threshold level on the port pin, by using Timer T1 in the input capture mode. The cycle count obtained in Timer T1 can be converted into voltage, either by direct calculation or by using a suitable approximation. Figure 1 shows the block diagram for the simple A/D conversion which measures the temperature.

BASIC CIRCUIT IMPLEMENTATION
Usually most applications use a comparator to measure the time it takes for a RC network to charge up to the voltage level on the comparator input. To reduce cost, it is possible to switch both inputs as shown in Figure 2.

Port G3 is the Timer T1 input. Ports G2/G1 are general purpose I/O pins that can be configured using the I/O configurations (push-pull output/tristate). All Port G pins are Schmitt Trigger inputs. R Lim is required to reduce the discharge current.

GENERAL IMPLEMENTATION
The temperature is measured with a NTC which is linearized with a parallel resistor. Using a parallel resistor, a linearization in the range of 100 Kelvin can be reached. The value of the resistor can be calculated as follow:

\[R_R = R_{tm} \left(\frac{B - 2T_m}{B + 2T_m} \right) \]

Where:
- \(R_{tm} \) is the value of the NTC at a medium temperature
- \(T_m \) is the medium temperature
- \(B \) is the NTC material constant

The linearization reduces the code, improves the accuracy and the tolerance of the NTC-R network (e.g. NTC = 100 kΩ ± 10%, \(R = 12 \) kΩ ± 1%, NTC//R ± 2%). Using that method the useful range does not cover the whole operating temperature range of the NTC.

GENERAL ACCURACY CONSIDERATIONS
Using a single slope A/D conversion the accuracy is dependent on the following parameters:
- Stability of the Clock frequency
- Time constant of the RC network
- Accuracy of the Schmitt Trigger level
- Non-linearity of the RC network

Figure 3. The maximum failure that appears when a sawtooth is generated without using a current source. In the current application the maximum failure would be more than 15% without using methods for reducing the non-linearities of RC-network/NTC-network.
The maximum error occurs when the gradient of the exponential function (RC) equals the gradient of the straight line (counter).

To reduce the error that is caused by the non-linearity of the RC-network a offset should be added to the calculated value. The offset reduce the failure to the middle.

Further, the accuracy can be improved by using a relative measurement method. The following diagram shows the method.

Measurement:
- Timer Capture mode: $R_{CAL} \cdot C$ is measured
- Timer Capture mode: $R_{NTC}/R \cdot C$ is measured

Calculation:
- Build the vertical-component ($R_{TMIN} - R_{TMAX}$) of the triangle
- Calculate the slope
- Calculate the actual temperature

Using this method the accuracy is primarily dependent on the accuracy of R_{TMIN} and R_{TMAX} and independent of the stability of the system clock, the capacitor and the threshold of the Schmitt Trigger level. The variation of the capacitor only leads to variation of the resolution.

The following diagram shows the ideal resistance/temperature characteristic of a NTC which is linearized with a parallel resistor.
APPLICATION EXAMPLE

The following application example for temperature measurement demonstrates the procedure. The temperature is measured from 20° to 100° and is displayed on a Triplex LCD display.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value and Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTC20</td>
<td>100 kΩ ± 10%</td>
</tr>
<tr>
<td>Rp</td>
<td>12 kΩ ± 1%</td>
</tr>
<tr>
<td>Tm</td>
<td>333 Kelvin → 60 Degrees</td>
</tr>
<tr>
<td>B</td>
<td>4800 Kelvin</td>
</tr>
<tr>
<td>NTC20/Rp</td>
<td>10.7 kΩ ± 2%</td>
</tr>
<tr>
<td>R_Cal</td>
<td>10.7 kΩ ± 1%</td>
</tr>
<tr>
<td>T_MIN</td>
<td>20 Degree</td>
</tr>
<tr>
<td>R_T_MIN</td>
<td>10.7 kΩ</td>
</tr>
<tr>
<td>T_MAX</td>
<td>100 Degree</td>
</tr>
<tr>
<td>RT_MAX</td>
<td>2.8 kΩ</td>
</tr>
<tr>
<td>C</td>
<td>1 µF</td>
</tr>
<tr>
<td>RC-Clock</td>
<td>2 MHz → 200 kHz instruction cycle, 5 µs</td>
</tr>
<tr>
<td>Timeconst.</td>
<td>R_CAL * C → 0.0107s</td>
</tr>
<tr>
<td>Resolution</td>
<td>2140 → 11 byte, depends which Cap. value is used</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 2 Degree</td>
</tr>
</tbody>
</table>

This temperature measurement example shows a low cost technique ideally suited for cost sensitive applications which do not need high accuracy.

Figure 6 shows the complete circuit of the demo board using the Triplex LCD method and the low cost A/D conversion technique.

The Triplex LCD drive technique is documented in a separate application note.

FIGURE 6. Circuit Diagram

Pressing key 1, key 2 the temperature is displayed in Degree/Fahrenheit.
Pressing key 3, key 4 Up/Down counter is displayed.

TL/DD/12075–6

TL/DD/12075–7
Figure 7 shows the flow chart of the program.

FIGURE 7. Flow Chart
The following code is required to implement the function. It does not include the code for the Triplex LCD drive.

```
RAM = 17 Byte;
ROM = 450 Byte; Optimization is possible about 50 byte if the B-pointer consistent is used!

***********************************************************************
A/D-CONVERSION  

***********************************************************************

.SECT REGPAGE,REG  
COUNT1: .DSB 1  
COUNT2: .DSB 1  

.SECT BASEPAGE,BASE  
ZL: .DSB 1 ;TEMPORARY  
YL: .DSB 1 ;TEMPORARY  

.SECT RAMPAGE,RAM  
CALIBLO: .DSB 1 ;CALIBRATION-VALUE  
CALIBHI: .DSB 1  
NTCLO: .DSB 1 ;NTC-VALUE  
NTCHI: .DSB 1  
TEMP: .DSB 2 ;TEMP.-VALUE  
KORRL: .DSB 2  
COMPL: .DSB 1  
COMP: .DSB 1  
CONTROL: .DSB 1 ;STATUS REGISTER  

***********************************************************************
**START MAIN PROGRAM**  

```

MAIN: LD #006F ;INIT SPACER_POINTER
 JSR DISCH ;DISCHARGE C (A/D-CONVERSION)
 JSR CALIB ;INIT CAPTURE MODE FOR UREF. MEASUREMENT
POLL: IFBIT 3, PORTGP ;POLL - MODE (TIO - PORT)
 JP CAL
 JP POLL

CALIB: LD B,#CALIBLO
 JSR CAPTH ;STOP TIMER, STORE CAPTURE VALUE
 JSR CALCR ;SLOPE IS CALCULATED
 NEW: JSR DISCH ;DISCHARGE C (A/D-CONVERSION)
 JSR NTC ;INIT CAPTURE MODE FOR UNTC MEASUREMENT
POLL1: IFBIT 3, PORTGP ;POLL-MODE
 JP CAL1
 JP POLL1

CAL1: LD B,#NTCLO
 JSR CAPTH ;STOP TIMER, STORE CAPTURE VALUE
 JSR CALCN ;TEMPERATURE IS CALCULATED
 JSR DISCH ;DISCHARGE C (A/D-CONVERSION)
 JSR DCHECK ;REDUCE THE DISPLAY FLICKERING
 JMP NEW

.ENDSECT

TL/DD/12075-9
; SECT CODE1.ROM
; THIS ROUTINE IS REQUIRED TO REDUCE THE NOISE ON THE LINE AND THE
; DISPLAY FLICKERING.
; SECT CODE1.ROM
DCHECK:
 LD A,CONTROL ;COMPARE TWO VALUES, IF EQUAL THEN
 XOR A,#300 ;DISPLAY IT, OTHERWISE THE OLD VALUE
 X A,CONTROL
 IFBIT 7,CONTROL
 JSR SAVE ;TEMP. SAVE
 JSR COMP ;COMPARE
 RET

; HANDLER FOR CAPTURE MODE
CAPTH: RBIT TPND,PSW ;RESET TIMER PENDING
 LD A,#0FF
 SC
 SUBC A,TAULO
 X A,[B+]
 LD A,#0FF
 SUBC A,TAUHI
 X A,[B+]
 RET

; CALIBRATION SUBROUTINE, UREF IS MEASURED
CALB:
 RBIT 3,PORTGD
 RBIT 3,PORTGC ;TRISTATE TIO
 LD PORTCD,#0
 LD PORTCC,#0 ;TRISTATE PORT C
 TICAP HIGH ;INIT CAPTURE MODE, HIGH SENSITIVE (MACRO)
 LD B,#CALIBLO
 SBIT 0,PORTCD ;CONFIRGURE C0 TO OUTPUT HIGH
 SBIT 0,PORTCC ;CHARGE CAP.
 SBIT TRUN, CNTRL ;START TIMER CAPTURE MODE
 RET

; NTC SUBROUTINE, UNTC IS MEASURED
NTC:
 RBIT 3,PORTGD
 RBIT 3,PORTGC ;TRISTATE TIO
 LD PORTCD,#0
 LD PORTCC,#0 ;TRISTATE PORT C
 TICAP HIGH ;INIT CAPTURE MODE, HIGH SENSITIVE (MACRO)
 LD B,#NTCLO
 SBIT 1,PORTCD ;CONFIRGURE C1 TO OUTPUT HIGH
 SBIT 1,PORTCC ;CHARGE CAP.
 SBIT TRUN, CNTRL ;START TIMER CAPTURE MODE
 RET
; DISCHARGE ROUTINE
DISCH:
 LD PORTCD,#000
 LD PORTCC,#000
 RBIT TIO,PORTGD ; DISCHARGE CAP.
 SBIT TIO,PORTGC
 LD COUNT1,#H(500) ; DISCHARGE TIME
 LD COUNT2,#L(500)
 JSR C1 ; DELAY ROUTINE FOR DISCHARGE TIME
 RET

; THIS SUBROUTINE CALCULATES THE SLOPE
; THE FOLLOWING CALCULATIONS ARE DONE
; KORR=CALIB/11KOHM (RCALIB.=11KOHM)
; KORR=KORR*2.8KOHM (T=100 DEGREE, RNTC=2.8KOHM)
; CALIB=KORR-KORR
; DIV=CALIB/30 (TEMPRANGE=80 DEGREE,100-20), SLOPE IS CALCULATED
; CALCR:
; KORR=CALIB/11KOHM
 LD ZL,#L(110)
 LD ZL+1,#H(110)
 LD A,CALIBLO
 X A,YL
 LD A,CALIBHI
 X A,YL+1
 JSR DIVBIN16 ; SUBROUTINE BINARY DIVIDE 16 BIT BY 16 BIT
 LD A,YL
 X A,KORRL

; KORR=KORR*28
 LD A,KORRL
 X A,ZL
 LD A,#28
 X A,YL
 JSR MULB16 ; SUBROUTINE MULTIPLY TWO 8 BIT VALUES
 LD A,YL
 X A,KORRL
 LD A,YL+1
 X A,KORRL+1

; KORR=CALIB-KORR
 LD B,#CALIBLO
 LD A,[B+]
 SC
 SUBC A,KORRL
 X A,KORRL
 LD A,[B]
This subroutine calculates the temperature.

The following calculations are done:

1. Subtract the temperature offset from the raw temperature.
2. Divide the result by 16.
3. If the result is higher than 54 degrees, then:
 a. Add the correction offset.
 b. The final result is used.

Subroutine binary divide 16 bit by 16 bit.

Conversion from HEX to BCD.
HEX TO BCD CONVERSION

LD A,ZL

IFGT A,#100 ;IF TEMPERATURE IS MORE THAN 100 DEGREE THEN
JP ERR ;ERROR

JSR BINBCD ;SUBROUTINE BINARY TO BCD CONVERSION;
LD A,BCDLO
X A,TEMP
LD A,BCDLO+1
X A,TEMP+1
RET

ERR: LD A,#00E ;ERROR MESSAGE IS DISPLAYED
X A,TEMP
CLR A
X A,TEMP+1
RET

COMP: LD A,COMPL ;IF THE LAST BOTH MEASUREMENTS ARE EQUAL
SC ;THEN DISPLAY
SUBC A,TEMP
IFEQ A,#0
JP DISPLAY ;OTHERWISE DISPLAY THE OLD VALUE
RET

DISPLAY: LD A,TEMP
X A,PF+2
LD A,TEMP+1
X A,PF+3
JSR LADDR ;UPDATE THE DISPLAY
JSR DEL ;DELAY TIME
RET

SAVE: LD A,TEMP ;TEMPORARY SAVE
X A,COMPL
LD A,TEMP+1
X A,COMPH
RET
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in automotive applications or environments unless the TI products are specifically designated by TI as automotive-grade or "enhanced plastic." Only products designated by TI as automotive-grade meet specific automotive specifications. Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such automotive applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such automotive applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any such use.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated