CGS700

AN-1006 Phase-Locked Loop Based Clock Generators

Literature Number: SNOA351
Phase-Locked Loop Based Clock Generators

INTRODUCTION

As system clock frequencies reach 100 MHz and beyond, maintaining control over clock becomes very important. In addition to generating the various clocks for the CPU, the clock generator must also provide other clocks for the peripheral interfaces such as PCI, video and graphics, and peripheral devices like FDC, KBD (Key Board Clock), etc. (see Figure 1 below). This note will show the advantages of using the Phase Locked Loop (PLL) and also describe the precautions required for designing circuits employing Phase-Locked Loops.

Today’s system places stringent requirements on the clock generators which involve shortest possible rise/fall times and propagation delay, tighter skew specifications, and minimum jitter.

The PLL-based Clock Generator provides a cost effective solution for generating various frequencies that are required in today’s system and it meets the demand for tighter specifications of important parameters like skew and jitter.

FREQUENCY SYNTHESIS AND FREQUENCY DIViders

A frequency synthesis technique and frequency dividers are used to generate multiple frequencies from an accurate reference frequency, usually a crystal oscillator. PLL is best suited for the frequency synthesis. Examples of the dividers are: counters, prescalers, etc. PLL uses digital frequency dividers. Since it is difficult to obtain a crystal resonating at a very low frequency, the output frequency in the example below is obtained by dividing a higher crystal frequency by n.

Figure 2 shows a frequency synthesizer in a simple form. For a fixed input frequency \(f_{IN} \) the desired output frequency \(f_O \) is generated by selecting the proper integer n. In actual designs, programmable counters and dividers are used in place of n.

FUNCTIONAL DESCRIPTION OF PHASE-LOCKED LOOP

A phase-locked loop is basically an oscillator whose frequency is locked onto some frequency component \(f_{IN} \) of an input signal. The phase detector compares the phases of the input signal \(f_{IN} \) and the VCO output and generates current pulse for the loop filter whose width is proportional to the phase error. This voltage is applied as a control voltage
to adjust the oscillator frequency. Through negative feedback, the PLL causes the input reference frequency and the VCO output frequency to be equal (with minimum phase error). Thus, both the phase and the frequency of the oscillator are locked to the phase and the frequency of the input signal. The basic elements of the PLL are:
1. Reference input source
2. Phase Detector
3. Digital frequency divider
4. VCO (Voltage Controlled Oscillator)
5. Loop Filter

The reference source frequency is usually supplied by the crystal. The phase detector acts as a multiplier and produces a sum frequency component as well as the difference component. The Phase detector consists of:
1. Digital Phase comparator
2. Charge Pump for pumping the charge up or down in the VCO

A typical digitally controlled analog PLL consists of a reference counter (R), feedback counter (N), post-scaling counter (P), and the core analog blocks which include a phase detector/charge pump, low-pass loop filter and the VCO itself. The R and P counters provide additional programming resolution in the system and are optional.

A charge pump is usually associated with the phase detector. The function of the charge pump is to convert the logic states of the detector into analog signals appropriate for controlling the VCO. The charge pump (in off state) and the input section of the VCO must have very low leakage tendency; otherwise, a voltage integration will occur at the loop filter between phase comparison events.

FIGURE 4. Block Diagram of PLL

for terminating the pump-up and pump-down output pulses simultaneously at the end of a phase comparison event. The overlap region of the output pulses should be sufficiently wide so that the charge pump current sources always reach 100% of their final value before being gated off.

LOOP FILTER

When two AC signals are multiplied together, the result is a DC signal and an AC signal at twice the frequency of an original signal. The Loop Filter is a low pass filter and is added to remove the 2x frequency component from the signal. Loop filters can either be integrated on the chip or be external to the device, depending on their size, impedance and application requiring user control. The on-chip filters are less subject to noise. However, they can consume significant die area. Off-chip filters require more pins on the device.

FREQUENCY DIVIDERS AND SCALARS FOR MULTIPLE FREQUENCY GENERATION

With the implementations of post scalars/dividers, various output frequencies can be generated as shown in Figure 6. When generating multiple output frequencies, there is a trade off between the jitter and the frequency accuracy. If the prescaler has a smaller value, the reference frequency and hence the update rate will be higher. This will result in lower jitter; however, the desired output frequency in this case may not be the exact frequency. The frequency error is described in PPM as shown below:

\[
\text{PPM} = \frac{\text{Actual Frequency} - \text{Required Frequency}}{\text{Required Frequency}}
\]

IMPORTANT PARAMETERS ASSOCIATED WITH PLL

When designing circuits using PLLs, the skew and jitter are the critical parameters and proper care should be taken in the design and layout of the circuit to minimize both the skew and jitter.

CLOCK SKEW

Skew between the outputs of the clock generator is a result of the difference in the propagation delay between the various circuit components inside the chip. As the clock signal propagates through the different stages in the device, it is delayed by the logic sections and interconnects. Clock skew is the tolerance in the arrival time of the active edge of the pulse. Skew is introduced in the device by:
1. The propagation delay tolerances due to transistor mismatching
2. Parasitic mismatching in interconnect
3. Package parasitic mismatching
The following four types of skews are defined by JEDEC:

1. Pin-to-pin skew (output skew)
2. Input skew
3. Pulse skew
4. Process skew (part-to-part skew)

PIN-TO-PIN SKEW (Output Skew)

Output skew is the difference in propagation delay between the fastest and the slowest output for a single device having a single input clock.

PULSE SKEW

Pulse skew is the difference between the propagation delay of t_{PHL} and t_{PLH} specifications on the same output for a device at identical operating conditions.

PROCESS SKEW

Process skew is the difference in the propagation delay between outputs of two equivalent devices when the devices have a common input clock. This skew is also referred to as part-to-part skew.

JITTER

Jitter is another critical performance parameter of the PLL-based clock generators. Since the VCO is locked to a low jitter reference, usually a crystal, most of the jitter at the output results from noise sources feeding back on the phase detector, loop filter and VCO. However, with proper care in the PLL design, the VCO is the most dominant component responding to the noise which results in jitter. Jitter can be contributed by many sources. Injection of unwanted signals from other parts of the circuits through the power supply can also contribute to jitter. Designing differential stages, for example, takes care of common mode noise on power supplies. Normally, when the design is optimized, the main source of the timing jitter could be thermal noise or shot noise of the active or passive device.
FIGURE 9. Dual PLLs

The total jitter seen at the output of a PLL-based clock generator contains two components; the intrinsic loop jitter and the effects of any reference jitter whose spectrum falls within the passband of the PLL. Generally, a PLL with narrow bandwidth can reject the input jitter but cannot correct the VCO timing errors quickly. The resultant output jitter is VCO noise limited. A PLL with wider bandwidth can correct VCO errors however, if the bandwidth is too wide, the resultant system will be input jitter limited.

When multiple frequencies are required in a system, it becomes difficult for a single PLL to generate several different frequencies with the same accuracy (i.e., minimum PPM values). In such cases, dual loops can be used for generating several multiple frequencies. When the clock generator is designed using dual PLLs, for example, one loop can generate fixed frequencies for the peripherals such as: PCI, FDC etc., while the other loop can generate variable frequencies for the CPU.

The advantages of dual loops over single loop are:
1. Dual loops can keep the design on a lower performance but more cost effective process.
2. Reduce the high frequency harmonics emitted by the loop.
3. Secondary effect: reduced Icc, since CMOS power is directly related to the frequency of operation.
4. Can produce a signal for peripheral clocks (such as: FDC, XBO, etc.) at a fixed rate while other clocks (e.g., CPU clock) may change to support power management.
5. Offers flexibility. Allows a designer to change the peripheral frequencies without changing the other loop dynamics.

DESIGN CONSIDERATIONS

Several precautions are required when designing the Phase-locked loop based clock generators. Here are some of the major considerations for avoiding noise and jitter problems.

VCO

The ideal VCO has a constant linear frequency response for a change in tuning voltage, or \(V_{FILTER} \) practical implementations may include high-frequency "roll-off" and an idle condition. Idling the VCO at zero tuning voltage assists in re-acquisition of lock since the oscillator is not required to start-up (see Figure 10).

FIGURE 10. Typical VCO Tuning Characteristics

PHASE DETECTOR

In this functional representation of a type 4 phase detector, a simple delay element is inserted in the reset path to stretch the pump up and pump down pulses to the charge pump thereby ensuring zero-deadband. The type 4 phase detector will respond to any phase error from \(0^\circ - 360^\circ \). Therefore, the phase detector/charge pump gain (Kp) is equal to the charge pump current divided by 2\(\pi \).

FIGURE 11. Simple Type 4 Phase Detector
PHASE DETECTOR DEADBAND
When the phase correction is not linear, it may cause the phase detector to have a deadband as shown in Figure 12.
In lock, REF and FBK active edges occur nearly simultaneously. Since pump-up or pump-down is active only during the time between these active transitions, practical charge pump implementations cannot respond linearly near the zero-phase condition.

FIGURE 12. Phase Detector Deadband
The problem of deadband in the phase detector can be eliminated by making certain that both pump-up and pump-down sources have come on before resetting the phase detector logic. This guarantees a more linear response to small phase errors since the charge pump current waveform is allowed to fully develop every reference cycle (see Figure 13).

FIGURE 13. Zero-Deadband Phase Detector

The spectral plot in Figure 14 show signs of being frequency modulated at the phase detector rate. Undesirable “reference spurs” are caused by continuous pumping into and out of the loop filter. This condition is exacerbated by the deadband region in the phase detector/charge pump block. Increasing the loop passband towards the reference frequency will tend to reduce the amplitude of the reference spurs at the expense of increased low frequency jitter in the VCO.

LAYOUT TECHNIQUES
Figure 15 illustrates an example of the most essential layout techniques for low jitter PLL’s. The use of separate, dedicated analog VCC/GND pins for the core analog blocks helps isolate them from supply variations. Guard-rings (P+ and N+) around the analog blocks and are tied to analog supplies to quiet the substrate. The external filter pin (if used) is placed between the analog power to avoid stray coupling outside the chip and magnetic coupling via bond wires. The critical blocks are placed at the corner of the die because in this way substrate resistance to the rest of the chip is maximized. If possible, use of “white space” between the analog blocks and the noisy areas of the die can be helpful.

FIGURE 15. Mixed-Signal Layout Techniques
Additionally, an off-chip analog supply filter can be used. The pole of the RC filter shown should be well below the cutoff frequency of the PLL. Keep in mind that the resistor will create a DC voltage offset which may limit its maximum value.

CONCLUSION

With strong core competencies in the mixed signal design area, and National’s PLL Center of Excellence (providing synergy and sharing of PLL technology company wide), National is providing PLL-based solutions in a variety of applications.

The Clock Generation and Support (CGS) family product offerings include several PLL-based clock generators with tighter design and layout rules. These clock generators have extremely low skew and jitter. National’s CGS product strategy is to develop devices to meet customer needs for high speed clock generation and support applications.

From the Proceedings of DesignSupercon ‘95 by Chai Vaidya and Rick Rasmussen.

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specified as military-grade. Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.converter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www.dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>www.interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www.logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated