OA-18 Simulation SPICE Models for Comlinear's Op Amps

ABSTRACT

This application report is a collection of PSpice compatible models for Texas Instruments amplifiers.

Contents

1 Introduction ... 3
2 Start Up Instructions .. 4
3 Amplifier Spice Models .. 4
4 Performance Results .. 5
5 Parameters Modeled .. 5
 5.1 DC Effects .. 5
 5.2 AC Effects < 500 MHz ... 5
 5.3 Time Domain .. 5
 5.4 Special Features (where applicable) .. 5
6 Parameters Not Modeled ... 6
7 Notice .. 6
8 References .. 6
9 Models ... 7

List of Figures

1 CLC109 .. 7
2 CLC111 .. 7
3 CLC400 ... 8
4 CLC401 ... 9
5 CLC402 ... 10
6 CLC404 .. 11
7 CLC405 .. 12
8 CLC406 .. 13
9 CLC407 .. 14
10 CLC409 ... 15
11 CLC410 ... 16
12 CLC412 ... 17
13 CLC414 ... 18
14 CLC415 ... 19
15 CLC420 ... 20
16 CLC425 ... 21
17 CLC426 ... 22
18 CLC428 ... 23
19 CLC430 ... 24
20 CLC431 ... 25
21 CLC432 ... 26
22 CLC440 ... 27

All trademarks are the property of their respective owners.
List of Tables

1. Updates to Spice Models .. 3
2. Spice Model Subcircuit Files ... 3
1 Introduction

Texas Instruments is a manufacturer and supplier of high-performance analog signal processing components. Texas Instruments broad signal conditioning product line includes high-speed hybrid and monolithic operational amplifiers, buffers, video amplifiers, multiplexers, automatic gain control integrated circuits, track/hold amplifiers, and analog-to-digital converters. Texas Instruments continues as a leader in developing products offering exceptional performance, speed, quality, reliability and service.

For additional information about SPICE Models supporting existing or new products, customers can visit the TI website. These SPICE Models are created for use on an IBM compatible computer using analysis programs that accept Spice formats. Texas Instruments assumes no responsibility for designs created from these SPICE Models. These SPICE Model files model typical performance at room temperature. AC response is dominated by board layout and package parasitics at frequencies above 500MHz. Before designs are released to production, Texas Instruments suggests that topologies be verified by prototyping the circuit. The part-to-part and over-temperature performance variations of Texas Instruments amplifiers are specified in current data sheets found on the TI website. The changes from the last SPICE Model version are listed in Table 1.

Table 1. Updates to Spice Models

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLC405.CIR</td>
<td>A new SPICE Model.</td>
</tr>
<tr>
<td>CLC406.CIR</td>
<td>A revised SPICE Model.</td>
</tr>
<tr>
<td>CLC407.CIR</td>
<td>A new SPICE Model.</td>
</tr>
<tr>
<td>CLC412.CIR</td>
<td>A new SPICE Model.</td>
</tr>
<tr>
<td>CLC430.CIR</td>
<td>A revised SPICE Model that improves disabled output response.</td>
</tr>
<tr>
<td>CLC440.CIR</td>
<td>A new SPICE Model.</td>
</tr>
<tr>
<td>CLC449.CIR</td>
<td>A new SPICE Model.</td>
</tr>
<tr>
<td>CLC450.MOD</td>
<td>A new SPICE Model.</td>
</tr>
</tbody>
</table>

Table 2. Spice Model Subcircuit Files

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLC109.CIR</td>
<td>A Low-Power, Wideband, Closed-Loop Buffer.</td>
</tr>
<tr>
<td>CLC111.CIR</td>
<td>A Very Wideband, Ultra-High Slew Rate, Closed-Loop Buffer.</td>
</tr>
<tr>
<td>CLC400.CIR</td>
<td>A Wideband, Low-Gain Monolithic Current Feedback Op Amp with Fast Settling (0.05% in 12 ns), Low Power, and an Input Offset Adjustment Pin.</td>
</tr>
<tr>
<td>CLC401.CIR</td>
<td>A Wideband, High-Gain Monolithic Current Feedback Op Amp with Fast Settling (0.01% in 10 ns) and Low Power.</td>
</tr>
<tr>
<td>CLC402.CIR</td>
<td>A Low-Gain Monolithic Current Feedback Op Amp with Fast 14-bit Settling (0.0025% in 25 ns) and Low Power.</td>
</tr>
<tr>
<td>CLC404.CIR</td>
<td>A Wideband Monolithic Current Feedback Op Amp with High Slew Rate.</td>
</tr>
<tr>
<td>CLC405.CIR</td>
<td>A Low-Cost, Low Power, and 110 MHz Op Amp with Disable.</td>
</tr>
<tr>
<td>CLC407.CIR</td>
<td>A Low-Cost, Low Power, Programmable Gain Buffer with Disable.</td>
</tr>
<tr>
<td>CLC409.CIR</td>
<td>A Very Wideband, Low Distortion Monolithic Current Feedback Op Amp.</td>
</tr>
<tr>
<td>CLC410.CIR</td>
<td>A Video Monolithic Current Feedback Op Amp with disable, Fast Settling (0.05% in 12 ns) and an Input Offset Adjust Pin.</td>
</tr>
<tr>
<td>CLC412.CIR</td>
<td>A Dual Wideband Video Op Amp.</td>
</tr>
<tr>
<td>CLC414.CIR</td>
<td>A Quad, Low-Power Monolithic Current-Feedback Op Amp.</td>
</tr>
<tr>
<td>CLC415.CIR</td>
<td>A Quad Wideband Monolithic Current Feedback Op Amp.</td>
</tr>
<tr>
<td>CLC420.CIR</td>
<td>A High-Speed, Unity Gain Stable Monolithic Voltage Feedback Op Amp.</td>
</tr>
</tbody>
</table>
Table 2. Spice Model Subcircuit Files (continued)

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLC430.CIR</td>
<td>A Wideband Monolithic Current Feedback Op Amp with disable and ±5V to ±15V supply capability.</td>
</tr>
<tr>
<td>CLC431.CIR</td>
<td>A Dual, Wideband Monolithic Current Feedback Op Amp with High Slew Rate.</td>
</tr>
<tr>
<td>CLC432.CIR</td>
<td>A Dual, Wideband Monolithic Current Feedback Op Amp with Disable and ±5V to ±15V Supply Capability.</td>
</tr>
<tr>
<td>CLC502.CIR</td>
<td>A High-Speed Output Clamping Monolithic Current Feedback Op Amp with Fast 14-bit Settling (0.0025% in 25 ns) for Low Gain.</td>
</tr>
<tr>
<td>CLC505.CIR</td>
<td>A High-Speed, Programmable-Supply Current, Monolithic Current Feedback Op Amp.</td>
</tr>
<tr>
<td>CLC520.CIR</td>
<td>A Monolithic Amplifier with Voltage Controlled Gain (AGC).</td>
</tr>
<tr>
<td>CLC522.CIR</td>
<td>A Monolithic Wideband Variable Gain Amplifier.</td>
</tr>
<tr>
<td>CLC532.CIR</td>
<td>A High-Speed, 2:1 Analog Multiplexer with fast 12-bit settling (0.01% in 17 ns), Low Noise, Low Distortion, and Adjustable Noise Bandwidth.</td>
</tr>
<tr>
<td>CLC5644.CIR</td>
<td>A Quad, Low-Power Monolithic Current- Feedback Op Amp.</td>
</tr>
<tr>
<td>CLC5655.CIR</td>
<td>A Quad Wideband Monolithic Current Feedback Op Amp.</td>
</tr>
<tr>
<td>CLC5665.CIR</td>
<td>A Wideband Monolithic Current Feedback Op Amp with Disable and ±5V to ±15V Supply Capability.</td>
</tr>
</tbody>
</table>

2 Start Up Instructions

Download all SPICE Model files of interest to a library on the hard disk. If the library directory is not in the SPICE program's path, the user should set that path in the autoexec.bat for easier excess. The .INC statement in PSpice should be used in the simulation file to include the SPICE Models subcircuit.

Example: ".INC CLC400.CIR"

3 Amplifier Spice Models

These SPICE Model files are written in ASCII file format for IBM-compatible PCs. They are compatible with PSpice and other Spice 2G simulators. For additional detailed information about using PSpice, please contact MicroSim (see reference [2]). Texas Instruments amplifier SPICE Models are written in a subcircuit format for easy incorporation into larger circuits. A listing of any amplifier subcircuit may be obtained by printing its CLC*.CIR file to a local printer. The subcircuit node assignments match the device pin-outs as shown in the individual device data sheets. An example is an 8 pin op amp.

- Connections: NON-INVERTING INPUT PIN
- || INVERTING INPUT PIN
- || OUTPUT
- ||| +V_{CC}
- |||| | −V_{CC}
- |||||

```
.SUBCKT (NAME) 3 2 6 7 4
```

Some schematic capture software packages require a different pin connection other than what Texas Instruments uses. Changing the pin order in the .SUBCKT statement will not affect the SPICE Model performance.
4 Performance Results
When substitutions of current feedback op amps are made for voltage feedback op amps, results may not be acceptable. For a tutorial on current feedback op amp design, see OA-13 Current Feedback Loop Gain Analysis and Performance Enhancement Application Report (SNOA366).

5 Parameters Modeled
The following typical performance parameters are modeled by the SPICE Models.

5.1 DC Effects
- VIO, IBI, IBN
- Supply current vs. supply voltages
- Common mode input/output voltage range
- Load current from supplies
- CMRR

5.2 AC Effects < 500 MHz
- Frequency response vs. gain and load
- Open loop gain and phase
- Noise
- Small signal input/output impedance

5.3 Time Domain
- Rise/fall times
- Slew rates

5.4 Special Features (where applicable)
- Output clamping
- Supply current adjustment
- Offset voltage adjust
- Disable/enable times
- External compensation

6 Parameters Not Modeled
- Differential gain and phase
- PSRR
- Harmonic distortion
- Fine scale settling performance
- Thermal tail
- Overdrive recovery time (Except for the CLC501 and the CLC502)
- Variation in performance vs. temperature
- Part-to-part performance variation
7 Notice

The information provided within these files and documents is believed to be reliable and correct. Texas Instruments assumes no responsibility for alterations, omissions or inaccuracies. Texas Instruments assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Texas Instruments does not grant licenses or patent rights to any of the circuits described within this document.

The circuits included in this application note have been tested with Texas Instruments parts that may have been obsoleted and/or replaced with newer products. Please refer to the CLC to LMH conversion table to find the appropriate replacement part for the obsolete device.

8 References

9 Models

Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 1. CLC109

Figure 2. CLC111
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 3. CLC400
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 4. CLC401
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 5. CLC402
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 6. CLC404
Note: Circlled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 7. CLC405
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 8. CLC406
Figure 9. CLC407

Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 10. CLC409
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 11. CLC410
Figure 12. CLC412

Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 13. CLC414
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 14. CLC415
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 15. CLC420
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 16. CLC425
Figure 17. CLC426

Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 18. CLC428
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 19. CLC430
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 20. CLC431
Figure 21. CLC432

Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 22. CLC440
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 23. CLC449
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 24. CLC501
Figure 25. CLC502

Note: Circed number denotes PIN number and number in parenthesis denotes NODE number.
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 26. CLC505
Note: Circed number denotes PIN number and number in parenthesis denotes NODE number.

Figure 27. CLC520

Note: Circed number denotes PIN number and number in parenthesis denotes NODE number.

Figure 28. CLC522
Note: Circed number denotes PIN number and number in parenthesis denotes NODE number.

Figure 29. CLC532
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 30. CLC5644
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 31. CLC5654
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 32. CLC5665
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 33. CLC5801
Note: Circled number denotes PIN number and number in parenthesis denotes NODE number.

Figure 34. CLC5802
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

- **Audio**: www.ti.com/audio
- **Amplifiers**: amplifier.ti.com
- **Data Converters**: dataconverter.ti.com
- **DLP® Products**: www.dlp.com
- **DSP**: dsp.ti.com
- **Clocks and Timers**: www.ti.com/clocks
- **Interface**: interface.ti.com
- **Logic**: logic.ti.com
- **Power Mgmt**: power.ti.com
- **Microcontrollers**: microcontroller.ti.com
- **RFID**: www.ti-rfid.com
- **OMAP Applications Processors**: www.ti.com/omap
- **Wireless Connectivity**: www.ti.com/wirelessconnectivity

Applications

- **Audio and Video**: www.ti.com/audio
- **Automotive and Transportation**: www.ti.com/automotive
- **Communications and Telecom**: www.ti.com/communications
- **Computers and Peripherals**: www.ti.com/computers
- **Consumer Electronics**: www.ti.com/consumer-electronics
- **Energy and Lighting**: www.ti.com/energy
- **Industrial**: www.ti.com/industrial
- **Medical**: www.ti.com/medical
- **Security**: www.ti.com/security
- **Space, Avionics and Defense**: www.ti.com/space-avionics-defense
- **Video and Imaging**: www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated