ABSTRACT

This application report shows a simple component pre-distortion method that works for many popular Sallen-Key (also called KRC or VCVS [voltage-controlled, voltage-source]) filter sections. This method compensates for voltage-feedback and current-feedback op amps. Several examples illustrate this method.

This revision obsoletes the previous revision of this application report, and covers additional material.

Contents

1 Introduction ... 2
2 Filter Component Pre-Distortion .. 2
3 KRC Lowpass Biquad .. 3
4 Design Example .. 4
 4.1 Overall Design ... 5
 4.2 Section A Pre-Distortion ... 5
 4.3 Section B Pre-Distortion ... 5
5 SPICE Models .. 7
6 Summary .. 7
7 References ... 7
Appendix A Transfer Function Examples 8
Appendix B Electrical Loop Delay .. 11

List of Figures

1 Lowpass Biquad .. 3
2 Lowpass Filter ... 4
3 Simulated Filter Magnitude Response 6
4 Simulated Filter Magnitude Response 6
1 Introduction

KRC active filter sections use an op amp and two resistors to set a non-inverting gain of K. Resistors and capacitors placed around this amplifier provide the desired transfer function. The op amp’s finite bandwidth causes K to be a function of frequency. For this reason, KRC filters typically operate at frequencies well below the op amp’s bandwidth ($f \ll f_{3dB}$).

"Pre-distortion" compensates for the op amp’s finite bandwidth by modifying the nominal resistor and capacitor values. The pre-distortion method in this application report compensates for the op amp’s group delay that is approximately constant when $f \ll f_{3dB}$.

One possible design sequence for KRC filters is:
- Design the filter assuming an ideal op amp (K is assumed constant over frequency)
 - Select components for low sensitivities
 - Do a worst case analysis
 - Do a temperature analysis
- Pre-distort the resistors and capacitors to compensate for the op amp’s group delay
- Compensate for parasitic elements

2 Filter Component Pre-Distortion

This section outlines a simple pre-distortion method that works for many popular Sallen-Key filters using current-feedback or voltage-feedback op amps. Other more general pre-distortion methods are available (see Reference [4]) that requires more design effort).

To pre-distort your filter components:

1. Calculate the op amp’s delay: $\tau_{oa} = \frac{1}{\omega_c} \cdot \frac{\phi(f_c)}{360^\circ}$ where, $\phi(f)$ is the op amp phase response in degrees, and f_c is the cutoff frequency (passband edge frequency) of your filter.
 (a) Subtract the phase shift caused by your measurement jig from any measured value of $\phi(f_c)$
 (b) The group delay is specified at f_c because it has the greatest impact on the filter response near the frequency.
 (c) Other less accurate estimates of the op amp delay at f_c are:
 (i) Step response propagation delay
 (ii) $1/(2\pi f_{3dB})$

2. The time delay around the filter feedback loop ("electrical loop delay") adds to the op amp delay. For this reason,
 (a) Make the filter feedback loop as physically short as possible.
 (b) If you need greater accuracy in the following calculation, use the electrical loop delay (τ_{eld}) instead of the op amp delay (τ_{oa}): $\tau_{eld} \leftarrow \tau_{oa}$. For information calculating τ_{eld}, see Appendix B

3. Replace K in the filter transfer function with a simple approximation to the op amp’s frequency response:
 (a) Start with a simple, single pole approximation:
 $$K \leftarrow \frac{K}{1 + \tau_{oa}s}$$, $s = j\omega$
 (1)
 (b) Alter the approximation to K and simplify:
 (c) Do not create new terms (a coefficient times a new power of s) in the transfer function after simplifying
 (d) Convert $(1 + \tau_{oa}s)$ to the exponential form (a pure time delay) when it multiplies, or divides, the entire transfer function
 (e) Do not change the gain at $\omega \approx \omega_p$ in allpass sections
 (f) The most useful alterations to K are:
All of these approximations are valid when: $\omega < < 1/\tau_{oa}$

4. Use an op amp with adequate bandwidth (f_{3db}) and slew rate (SR):

$$f_{3db} \geq 10f_H$$
$$SR > 5f_H V_{peak}$$

Where f_H is the highest frequency in the passband of the filter, and V_{peak} is the largest peak voltage. This increases the accuracy of the pre-distortion algorithm. It also reduces the filter’s sensitivity to op amp performance changes over temperature and process. Make sure the op amp is stable at the gain of $A_v = K$.

Appendix A contains examples using transfer functions. Section 3 applies the results from Appendix A.

3 KRC Lowpass Biquad

The biquad shown in Figure 2 is a Sallen-Key lowpass biquad. V_{in} needs to be a voltage source with low output impedance. R_1 and R_2 attenuate V_{in} to keep the signal within the op amp’s dynamic range. Using Section A.2 in Appendix A will show:

$$\frac{V_o}{V_{in}} = \frac{H_2}{1 + \left(\frac{V_{p_1} Q_p}{H_0}\right)^2 \cdot \alpha \cdot e^{-\alpha \omega}}$$

where:

$$\alpha = R_2 / (R_1 + R_2)$$
$$K = 1 + R_1 / R_g$$
$$H_0 = \alpha K$$
$$R_{12} = (R_1 || R_2)$$
$$1/(\alpha V_{p_1} Q_p) = R_{12} C_6 (1 - K) + R_3 C_4 + R_{12} C_4$$
$$1/\alpha V_{p_1} = R_{12} R_3 C_4 C_6 + K_{oa} R_{12} C_6$$

After selecting α and R_{12}, calculate R_1 and R_2 as:

$$R_1 = R_{12} / \alpha$$
$$R_2 = R_{12} / (1 - \alpha)$$

![Figure 1. Lowpass Biquad](image)

To pre-distort this filter:

1. Design the filter assuming K constant ($\tau_{oa} = 0$). Use low values for K so that:
 (a) τ_{oa} will have less impact on the biquad’s response.
 (b) For voltage-feedback op amps, τ_{oa} will be smaller ($\tau_{oa} \approx K$ divided by the gain-bandwidth products).
2. Recalculate the resistors and capacitors using the pre-distorted values of ω_p and Q_p ($\omega_p^{(pd)}$ and $Q_p^{(pd)}$) that compensates for τ_0a:

\[
\begin{align*}
1/(\omega_p^{2(pd)}) &= 1/(\omega_p^{2(nom)}) - K_{oa} R_1 C_5 \\
&= R_1 R_3 C_4 C_5 \\
1/(Q_p^{2(pd)}) &= 1/(Q_p^{2(nom)}) + 1/(Q_p^{2(nom)} - 1) \\
&= R_1 C_5 (1 - K) + R_3 C_4 + R_1 C_4
d\end{align*}
\]

where, $\omega_p^{(nom)}$ and $Q_p^{(nom)}$ are the nominal values of ω_p and Q_p

3. Repeat step 2 until $\omega_p \approx \omega_p^{(nom)}$ and $Q_p \approx Q_p^{(nom)}$, where:

\[
\begin{align*}
1/(\omega_p^{2}) &= 1/(\omega_p^{2(nom)}) - K_{oa} R_1 C_5 \\
1/(Q_p^{2}) &= 1/(Q_p^{2(nom)} - 1)
d\end{align*}
\]

4. **Design Example**

The circuit shown is a third order Chebyshev lowpass filter. Section 4.2 is a buffered single pole section, and Section 4.3 is a lowpass biquad. Use a voltage source with low output impedance, such as the CLC111 buffer, for V_{in}.

![Figure 2. Lowpass Filter](image)

The nominal filter specification are:

- $f_c = 50\text{MHz}$—(passband edge frequency)
- $f_s = 100\text{MHz}$—(stopband edge frequency)
- $A_p = 0.5\text{dB}$—(maximum passband ripple)
- $A_s = 19\text{dB}$—(minimum stopband attenuation)
- $H_0 = 0\text{dB}$—(DC voltage gain)

The third order Chebyshev filter meets our specifications (see References [1] through [4]). The resulting -3dB frequency is 58.4MHz. The pole frequencies and quality factors are:

<table>
<thead>
<tr>
<th>Section</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_p/2\pi$ [MHz]</td>
<td>53.45</td>
<td>31.30</td>
</tr>
<tr>
<td>Q_p</td>
<td>1.706</td>
<td>—</td>
</tr>
</tbody>
</table>
4.1 Overall Design

1. Use the CLC111 for Section 4.2. This is a closed loop buffer:
 (a) $f_{3dB} = 800\text{MHz} > 10f_c = 500\text{MHz}$
 (b) SR = 3500V/µs, while a 50MHz, $2V_{pp}$ sinusoid requires more than 250V/µs
 (c) $\tau_{oa} \approx 0.28\text{ns}$ at 50MHz
 (d) $C_{ni(111)} = 1.3\text{pF}$ (input capacitance)

2. Use the CLC446 for Section 4.3. This is a current feedback op amp:
 (a) $f_{3dB} = 400\text{MHz} \approx 10f_c = 500\text{MHz}$
 (b) SR = 2000V/µs > 250V/µs (see item #1)
 (c) $\tau_{oa} \approx 0.56\text{ns}$ at 50MHz
 (d) $C_{ni(446)} = 10\text{pF}$ (non-inverting capacitance)

3. Use 1% resistors (chip metal film, 1206 SMD, 25ppm/°C).
4. Use 1% capacitors (ceramic chip, 1206 SMD, 100ppm/°C).
5. Use standard resistor and capacitor values.
6. For the low-sensitivity design of this biquad, see Reference [6].

4.2 Section A Pre-Distortion

R_{1A} was selected for noise, distortion and to properly isolate the CLC111’s output and C_{2A}. The pole is then set by C_{2A}. The pre-distorted value of R_{1A}, that also compensates for $C_{ni(111)}$, is (see Section A.1 in Appendix A):

$$R_{1A} = \frac{1}{\omega_p - \tau_{oa}}/(C_{2A} + C_{ni(111)})$$ \hspace{1cm} (5)

The resulting components are in the table below:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Initial</th>
<th>Adjusted</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{1A}</td>
<td>10Ω</td>
<td>100Ω</td>
<td>100Ω</td>
<td>100Ω</td>
</tr>
<tr>
<td>C_{2A}</td>
<td>47pF</td>
<td>47pF</td>
<td>47pF</td>
<td>47pF</td>
</tr>
<tr>
<td>$C_{ni(111)}$</td>
<td>–</td>
<td>1.3pF</td>
<td>1.3pF</td>
<td>1.3pF</td>
</tr>
</tbody>
</table>

4.3 Section B Pre-Distortion

- The design started with these values:
 $\omega_{p(\text{nom})} = 2\pi (53.45\text{MHz})$ $Q_{p(\text{nom})} = 1.706$ $K_b = 1.50$ $\alpha_b = 0.667$ $C_{4B} = 4.7\text{pF}$ $C_{5B} = 47\text{pF}$ \hspace{1cm} (6)
- Iteration 0 shows the initial design results. Iterations 1-3 pre-distort R_{12B} and R_{3B} to compensate for the CLC446’s group delay:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_{p(\text{nom})}/2\pi$ [MHz]</td>
<td>53.45</td>
<td>63.21</td>
<td>60.65</td>
<td>61.21</td>
</tr>
<tr>
<td>$Q_{p(\text{nom})}$</td>
<td>1.706</td>
<td>1.443</td>
<td>1.503</td>
<td>1.490</td>
</tr>
<tr>
<td>R_{12B} [Ω]</td>
<td>64.00</td>
<td>50.17</td>
<td>53.32</td>
<td>52.63</td>
</tr>
<tr>
<td>R_{3B} [Ω]</td>
<td>627.0</td>
<td>571.9</td>
<td>584.9</td>
<td>581.9</td>
</tr>
<tr>
<td>$K_{t_{oa}}R_{12B}C_{5B}$ [ns²]</td>
<td>2.527</td>
<td>1.981</td>
<td>2.105</td>
<td>2.078</td>
</tr>
<tr>
<td>$\omega_{g}/2\pi$ [MHz]</td>
<td>47.15</td>
<td>55.18</td>
<td>53.08</td>
<td>53.53</td>
</tr>
<tr>
<td>Q_{g} []</td>
<td>1.934</td>
<td>1.653</td>
<td>1.718</td>
<td>1.703</td>
</tr>
</tbody>
</table>
The resulting components are:

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Value</th>
<th>Adjusted Value</th>
<th>Standard Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{1B}</td>
<td>96.0 Ω</td>
<td>78.9 Ω</td>
<td>78.7 Ω</td>
</tr>
<tr>
<td>R_{2B}</td>
<td>192 Ω</td>
<td>158 Ω</td>
<td>158 Ω</td>
</tr>
<tr>
<td>R_{3B}</td>
<td>627 Ω</td>
<td>582 Ω</td>
<td>576 Ω</td>
</tr>
<tr>
<td>C_{4B}</td>
<td>4.7pF</td>
<td>3.7pF</td>
<td>3.6pF</td>
</tr>
<tr>
<td>C_{n4(446)}</td>
<td>–</td>
<td>1.0pF</td>
<td>1.0pF</td>
</tr>
<tr>
<td>C_{5B}</td>
<td>47pF</td>
<td>47pF</td>
<td>47pF</td>
</tr>
<tr>
<td>R_{fB}</td>
<td>348 Ω</td>
<td>348 Ω</td>
<td>348 Ω</td>
</tr>
<tr>
<td>R_{gB}</td>
<td>696 Ω</td>
<td>696 Ω</td>
<td>698 Ω</td>
</tr>
</tbody>
</table>

Figure 3 and Figure 4 show simulated gains for the following conditions:

- Ideal (Initial Values, \(\tau_{oa} = 0 \))
- Without Pre-distortion (Initial Values, \(\tau_{oa} \neq 0 \))
- Without Pre-distortion (Standard Values, \(\tau_{oa} \neq 0 \))

![Figure 3. Simulated Filter Magnitude Response](image1)

![Figure 4. Simulated Filter Magnitude Response](image2)
5 SPICE Models

SPICE models are available for most of Comlinear’s amplifiers. These models support nominal DC, AC, AC noise and transient simulations at room temperature.

We recommend simulating with Comlinear’s SPICE models to:
• Predict the op amp’s influence on filter response
• Support quicker design cycles

Include board and component parasitics to obtain a more accurate prediction of the filter’s response, and to further improve your design.

To verify your simulations, we recommend bread-boarding your circuit.

6 Summary

This application report demonstrates a component pre-distortion method that:
• Works for popular Sallen-Key filter sections
• Is quick and simple to use
• Shows the op amp’s effect on the filter response
• Gives reasonable op amp selection criteria

Appendix A and Section 4 contain illustrations of this method.

7 References

5. OA-21 Component Pre-Distortion for Sallen Key Filters (SNOA369).
7. CLC to LMH Conversion Table (SNOA428).

NOTE: The circuits included in this application report have been tested with Texas Instruments parts that may have been obsoleted and/or replaced with newer products. To find the appropriate replacement part for the obsolete device, see the CLC to LMH Conversion Table (SNOA428).
Appendix A Transfer Function Examples

A.1 Single Pole Section, K in the Numerator

\[
\frac{V_o}{V_i} = \frac{K}{1 + (1/\omega_p) s^{\tau_1}}
\]

where \(\tau_1\) is a time constant set by resistors and capacitors.

To include the op amp’s group delay, substitute for \(K\) and simplify:

\[
\frac{V_o}{V_i} = \frac{1}{1 + (1/\omega_p) s^{\tau_1}} \cdot \frac{1}{1 + (1/\omega_a) s^{\tau_1}}
\]

\[
\frac{K}{\tau_1 + \tau_{oa}}
\]

Notice that:

- There are no new powers of \(s\) in the transfer function
- Changing the resistor and capacitor values can compensate for \(\tau_{oa}\)
- The approximation is reasonably accurate when \(f << f_{3dB}\)

To pre-distort this filter section, recalculate the resistors and capacitors using Equation 9:

\[
\tau_1 = \frac{1}{\omega_p} \cdot \tau_{oa}
\]

A.2 Single Pole Allpass Section, K Times the Numerator

\[
\frac{V_o}{V_i} = \frac{1 - (1/\omega_p) s^{\tau_1}}{1 + (1/\omega_p) s^{\tau_1}} \cdot \frac{1 - (1/\omega_a) s^{\tau_2}}{1 + (1/\omega_a) s^{\tau_2}}
\]

\[
\frac{K}{\tau_1 + \tau_2}
\]

where \(\tau_1\) and \(\tau_2\) are time constants set by resistors and capacitors. This section operates as an allpass filter when:

\[
\tau_1 = \tau_2
\]

To include the op amp’s group delay, substitute for \(K\) and simplify. Since this is an allpass transfer function, the approximation to \(K\) does not change gain at \(\omega = \omega_p\):

\[
\frac{V_o}{V_i} = \frac{1 - (1/\omega_p) s^{\tau_1}}{1 + (1/\omega_p) s^{\tau_1}} \cdot \frac{1 - (1/\omega_a) s^{\tau_2}}{1 + (1/\omega_a) s^{\tau_2}}
\]

\[
\frac{K}{\tau_2 + \tau_{oa}/2}
\]

Notice that:

- There are no new powers of \(s\) in the transfer function
- The gain at \(\omega_p\) does not change (this is an allpass section)
- Changing the resistor and capacitor values can compensate for \(\tau_{oa}\)
- The approximation is reasonably accurate when \(f << f_{3dB}\)

To pre-distort this filter, recalculate the resistor and capacitors using Equation 13:

\[
\tau_2 = \frac{1}{\omega_a} \cdot \frac{1}{\tau_{oa}/2} \quad \tau_1 = \frac{1}{\omega_p} \cdot \frac{1}{\tau_{oa}/2}
\]
A.3 Biquad Section, s Term in the Denominator That Includes K

\[\frac{V_o}{V_i} = \frac{1}{1 + (1/(\omega_p Q_p))s + (1/\omega_p^2)s^2} \]

\[\frac{1}{(\omega_p Q_p)^2} = \tau_1 + K\tau_2 \]

\[\frac{1}{\omega_p^2} = \tau_3 \]

(14)

where \(\tau_1, \tau_2 \) and \(\tau_3 \) are time constants set by resistors and capacitors.

To include the op amp's group delay, substitute for \(K \) and simplify:

\[\frac{V_o}{V_i} \approx \frac{1}{1 + (1\omega_p Q_p + (1/\omega_p^2)s^2) \frac{\tau_1 + \tau_2}{s + (\tau_3)s^2}} \]

\[\omega_p, \omega_o, << 1/\tau_{oa} \]

\[1/(\omega_p Q_p) = \tau_1 + K\tau_2 \]

\[1/\omega_p^2 = \tau_3^2 + K\tau_2\tau_{oa} \]

(15)

Notice that:

- There are no new powers of \(s \) in the transfer function
- Changing the resistor and capacitor values can compensate for \(\tau_{oa} \)
- The approximation is reasonably accurate when \(f << f_{3dB} \)

To pre-distort this filter:

1. Design the filter assuming \(K \) constant (\(\tau_{oa} = 0 \)).
2. Recalculate the resistors and capacitors using the pre-distorted values of \(\omega_p \) and \(Q_p \) (\(\omega_p(pd) \) and \(Q_p(pd) \))

\[1/\omega_p^2 \approx 1/\omega_p^2(pd) + K\tau_2\tau_{oa} \]

\[\frac{1}{(\omega_p Q_p)^2} \approx \frac{1}{(\omega_p Q_p(pd))^2} \approx \frac{1}{(\omega_p Q_p(nom))^2} \]

(16)

that will compensate for \(\tau_{oa} \):

\[\omega_p(pd) = \tau_1 + K\tau_2 \]

where \(\omega_p(nom) \) and \(Q_p(nom) \) are the nominal values of \(\omega_p \) and \(Q_p \)

3. Repeat step 2 until \(\omega_p \approx \omega_p(nom) \) and

- \(Q_p \approx Q_p(nom) \), where:

\[1/\omega_p^2 \approx 1/\omega_p^2(pd) + K\tau_2\tau_{oa} \]

\[1/(\omega_p Q_p)^2 \approx 1/(\omega_p Q_p(pd))^2 \]

\[1/(\omega_p Q_p)^2 \approx 1/(\omega_p Q_p(pd))^2 \]

(16)
A.4 Biquad Section, s^2 Term in the Denominator Multiplied by K

\[
\frac{V_o}{V_{in}} = \frac{1}{1 + \frac{1}{(1/(\omega_p Q_p)s)} + \frac{(1/\omega_{oa})s^2}{K(1 + \frac{1}{\omega_{oa}}s)^2}}
\]

\[1/(\omega_p Q_p) = t_1\]

\[1/\omega_{oa} = Kt_2^2\]

(17)

where, t_1 and t_2 are time constants set by resistors and capacitors.

To include the op amp’s group delay, substitute for K and simplify:

\[
\frac{V_o}{V_{in}} = \frac{1}{1 + (t_1)s + (t_2^2 + K(1 + \frac{1}{\omega_{oa}}s))s^2}
\]

\[= \frac{1}{1 + (1/(\omega_{oa}s))s + (1/\omega_{oa})s^2}\]

\[\omega_{oa} \ll 1/\omega_{oa}\]

\[1/(\omega_{oa}s) = t_1 + \omega_{oa}\]

\[1/\omega_{oa}^2 = Kg_2^2 + t_1/\omega_{oa}\]

(18)

(19)

Notice that:

- The $(1 + \omega_{oa}s)$ factor in the numerator was converted to the exponential form, which represents a constant group delay
- There are no new powers of s in the transfer function
- Changing the resistor and capacitor values can compensate for ω_{oa}
- The approximation is reasonably accurate when $f < \omega_{3dB}$

To pre-distort this filter:

1. Design the filter assuming K constant ($\omega_{oa} = 0$).
2. Recalculate the resistors and capacitors using the pre-distorted values of ω_p and Q_p, $\omega_{p(pd)}$ and $Q_{p(pd)}$)

\[1/\omega_{p(pd)} = 1/\omega_{p(nom)} + t_1/\omega_{oa}\]

\[1/(\omega_{p(pd)} Q_{p(pd)}) = 1/\omega_{p(nom)} Q_{p(nom)} + t_1/\omega_{oa}\]

that will compensate for ω_{oa}:

where $\omega_{p(nom)}$ and $Q_{p(nom)}$ are the nominal values of ω_p and Q_p

3. Repeat step 2 until $\omega_p \approx \omega_{p(nom)}$ and $Q_p \approx Q_{p(nom)}$, where:

\[1/(\omega_{p(pd)} Q_{p(pd)} = 1/(\omega_{p(nom)} Q_{p(nom)}} + t_1/\omega_{oa}\]
Appendix B Electrical Loop Delay

\[\tau_{eld} \text{ can be calculated as:} \]
\[\tau_{eld} = x \cdot \sqrt{\frac{\varepsilon_r \mu_r}{c}} \cdot \tau_{oa} \]

(20)

where,

- \(x \) is the distance around the filter feedback loop, excluding the op amp
- \(\varepsilon_r \) is the equivalent relative permittivity of the PCB trace
- \(\mu_r \) is the equivalent relative permeability of the PCB trace
- \(c \) is the speed of light in free space (3.00 \(\times \) 10\(^8\) m/s)
- \(\tau_{oa} \) is the op amp group delay at \(f_c \)

For a typical printed circuit board, \(\sqrt{\frac{\varepsilon_r \mu_r}{c}} \approx 2.0 \). This gives:

\[\tau_{eld} \approx x \cdot (0.067 \text{ns/cm}) + \tau_{oa} \]

(21)

where, \(x \) is in centimeters, and \(\tau_{oa} \) is in nanoseconds.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnection

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video
TI E2E Community	e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated