ABSTRACT

CMOS data acquisition and conversion products are becoming the ideal choice for microprocessor controlled analog systems. The use of CMOS allows the addition of more digital logic functionality on to the same die as the analog circuitry to minimize external parts requirements. The inherently low power consumption is also a big factor for battery operation and low heat generation in large scale systems.

Contents

1 Overview ... 2
2 Reference .. 7

List of Figures

1 The Standard Current-Switching R-2R Ladder Network ... 2
2 Operating the Ladder “Backwards” to Serve as a Voltage-Switching Network 3
3 The Effects of Bringing the VCC Supply and VREF Closer Together and Temperature Performance Using the DAC in the Voltage-Switching Mode ... 4
4 Obtaining 0V to 10V Output from a 2.5V Reference .. 4
5 A Single-Supply DAC with Level Shift and Span Adjustable Output .. 5
6 Single-Supply DAC .. 5
7 Easily Calibrated, Isolated 4 mA-20 mA Current Loop Controller .. 6
8 Single 5V Supply, 8-Bit CMOS DAC .. 7
1 Overview

The MICRODAC family of 8, 10 and 12-bit D to A converters all feature on-chip data latches to permit direct interface to 8 or 16-bit data busses. These devices were designed to provide the most versatility from an analog standpoint. By utilizing a current switching R-2R ladder network (Figure 1), the applied reference voltage can be either a stable DC voltage or an AC voltage within the wide range of ±10V. However, output linearity requires that the two current output terminals be biased to 0V. This is accomplished by using an external op amp to serve as a current-to-voltage converter. Negative feedback via the feedback resistor included in the DAC keeps the I_{OUTH} terminal at a virtual ground potential. A drawback to this technique is that the output amplifier inverts and outputs a voltage of the opposite polarity of the applied reference. This then requires the output amplifier to have a negative supply voltage if the reference were positive. To operate with only a single-supply by biasing the ground pin of the DAC and the inputs of the op amp to $\frac{1}{2}$ the supply does not work, as the digital inputs are no longer TTL compatible.

All hope is not lost, however, if single-supply operation is essential. By taking a somewhat backwards view of the DAC ladder network, only a single positive supply is necessary. In Figure 2 the R-2R ladder network is used to switch voltages rather than currents. By applying the reference to the normal current output terminal (I_{OUT1}) and grounding I_{OUT2} the voltage at the reference terminal will be a fraction of the reference voltage and a function of the applied digital input code.

There are two important considerations when using this voltage-switching approach. The applied reference voltage must be positive since there are internal parasitic diodes from the I_{OUT} terminals to ground which would turn on if the reference were to be negative. This, of course, is of no concern with single-supply applications. There is also a dependence of converter linearity and gain error on the voltage difference between the DAC's V_{CC} supply and the applied reference voltage. This is a result of the voltage drive requirement of the CMOS ladder switches. To ensure that all of the switches can turn on sufficiently (so as not to add significant resistance to any leg of the ladder and thereby introduce additional linearity and gain errors) an 8-bit DAC should not have a reference greater than 5V and the V_{CC} supply should be at least 9V more positive than the reference. This would keep linearity and gain error degradation less than 0.1%. A 10-bit DAC is a bit more stringent. For a 0.005% or less error degradation, the reference should be less than 3V and V_{CC} should be 10V more positive. The typical effects of bringing V_{REF} and V_{CC} closer together, as well as temperature performance, are shown graphically in Figure 3 for the 8-bit DAC0830 series.

![Figure 1. The Standard Current-Switching R-2R Ladder Network](image-url)
Since the output is now a voltage rather than a current, an output op amp is not necessarily required, but the DAC’s output impedance is fairly high (equal to its specified reference input resistance of 10k to 20k), so an op amp may be required for buffering purposes. Figure 4 shows a single-supply DAC with an output amplifier providing buffering and gain for a more useful 0V to 10V output from a 2.5V reference. The LM336 reference diode is biased through the internal feedback resistor between the I_{OUT1} pin and the R_{fb} pin. The zero-code output voltage is limited by the lower output saturation voltage of the LM358 op amp. The 2k pull-down load resistor helps to reduce this voltage to 10 mV or $1/4$ of an output LSB. Even with a 15V DAC supply, the digital inputs remain T2L compatible.

Closer inspection of Figure 2 shows that both I_{OUT1} and I_{OUT2} drive the ladder network in an identical manner. Each leg is connected to either I_{OUT1} or I_{OUT2} as controlled by the logic state of each digital input. If each I_{OUT} terminal is biased to separate reference potentials, the circuit of Figure 5 results. This is a single-supply DAC with an adjustable zero-code output offset voltage and adjustable output span to reserve the full resolution of the DAC for a range of voltages other than 0V to full-scale. An important point to note is that for an all ones code applied, only the voltage at I_{OUT1} is connected to the ladder and sets the output to $255/256$ times the voltage of I_{OUT1}. With an all zeros code applied, only the voltage at I_{OUT2} drives the ladder, setting the output to $255/256$ times this voltage. This non-interaction of the two inputs at the end-points makes calibration a breeze. The incremental analog output steps are automatically set to $(V_{\text{MAX}}-V_{\text{MIN}})/256$.

The buffers at the two reference inputs in Figure 5 isolate the code-dependent resistance to ground at I_{OUT1} and I_{OUT2} from the resistive string used to set V_{MAX} and V_{MIN}. The output responds in accordance to the following expression.

$$V_{\text{OUT}} = \frac{D}{256} (V_{\text{MAX}} - V_{\text{MIN}}) + \frac{255}{256} V_{\text{MIN}}$$ \hspace{1cm} (1)$$

Where D is the decimal equivalent of the 8-bit binary control word.
Gain and Linearity Error Variation vs Supply Voltage

Gain and Linearity Error Variation vs Reference Voltage

Gain and Linearity Error Variation vs Temperature

Note: For these curves, V_{REF} is the voltage applied to the I_{OUT1} terminal and I_{OUT2} is grounded.

Figure 3. The Effects of Bringing the VCC Supply and VREF Closer Together and Temperature Performance Using the DAC in the Voltage-Switching Mode

Figure 4. Obtaining 0V to 10V Output from a 2.5V Reference
A common requirement of single-supply systems is that the outputs of signal-conditioning amplifiers must be DC biased, typically to \(\frac{1}{2} \) of the \(V_{CC} \) supply, to provide maximum unclipped AC signal swing. The circuit of Figure 6 shows how this dual-input voltage-switching DAC configuration can allow the digital input code to control the attenuation of an AC signal without significantly affecting the DC biasing level. If the voltage at \(I_{OUT2} \) is set to the DC level of the voltage at \(I_{OUT1} \), then the term in Equation 1 which is controlled by the digital input code, \(D \), reduces to just the AC signal at \(I_{OUT1} \). The DC level at the output is 255/256 times the DC level at the input.

The circuit of Figure 7 combines the advantages of low power consumption of the CMOS MICRODACs together with the non-interactive zero and full-scale adjustability of this voltage-switching technique. This circuit is an isolated 4 mA-20 mA current loop controller where the DAC sets the amount of current that flows through the loop, yet receives its own power from the very same loop.

Digital control and isolation are provided by a single optoisolator and a CMOS counter. The controlling processor must generate a clock and keep track of the number of clock pulses issued to the circuit to know what the loop current is at any time. On power-up the counter is reset to all zeros to give the processor a starting point, as well as to inherently provide a calibration point. When calibrating, potentiometer \(P1 \) would be set for the zero-code loop current of 4 mA. The processor would then issue exactly 255 clock pulses to the opto-isolator. Potentiometer \(P2 \) can then adjust the full-scale current value to 19.92 mA. If one more clock pulse is issued, the DAC input code returns to all zeros and the previously set value of 4 mA will flow, as this setting was unaffected by the full-scale adjustment.
The NPN emitter-follower will conduct whatever level of current necessary to keep the voltage across resistor R_S equal to the voltage across resistor R_X. This voltage is equal to the output voltage at the V_{REF} pin of the DAC which can be determined from Equation 1. The actual loop current is:

$$I_{LOOP} = \frac{V_{DAC}}{\frac{1}{R_S} + \frac{1}{R_X}}$$

(2)

The second LM329 reference diode is used to bias the DAC V_{CC} supply higher than the voltages at I_{OUT1} and I_{OUT2} to preserve linearity.

Finally, what if a D to A function is required, but only a single 5V supply is available and minimal supply current is a primary concern (battery powered instrumentation is a good example)? The voltage-switching techniques previously described are not suitable because not enough voltage is available to properly bias the DAC. A CMOS DAC is still attractive for its low supply current requirements and if it can be operated in the standard current switching configuration, a single 5V supply is sufficient. But how about the voltage inversion and the requirement for negative supply potential?

By taking advantage of an age-old technique of clocking a diode-capacitor network connected as a DC to DC voltage inverter, a low current negative supply can be generated. In the circuit of Figure 8, 2 diodes and 2 capacitors are clocked by a CMOS Schmitt trigger oscillator and connected in such a fashion as to generate a $-3.8V$ supply potential. This negative supply is used only to bias a low current LM385-2.5V reference diode to provide the DAC with a stable negative reference. Now the inversion of the output current-to-voltage converter will generate a positive output ranging from 0V to 2.5V as a function of the digital input code.
The amount of ripple that may appear at the reference input is a function of the dynamic impedance of the LM385, the clock frequency and the size of the switching capacitors. For the component values shown, the clock frequency is approximately 1 kHz and the ripple on the reference is 7 mV peak to peak. This ripple is cleanly filtered by the bypass cap around the feedback resistor of the output amplifier. The output op amp is part of a new low power quad, the LP324, which is ideal for its ability to common-mode to ground on the inputs and swing very close to ground at its output. If an extra CMOS Schmitt inverter is not readily available, the oscillator function can be implemented with another of the amplifiers in the op amp package. The total supply current of this single-supply DAC is on the order of 1.5 mA with no output load.

With this technique even the 12-bit DAC1230 can be used with no linearity degradation which would be apparent in the voltage-switching techniques.

Figure 8. Single 5V Supply, 8-Bit CMOS DAC

2 Reference

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications
Audio and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging
TI E2E Community

e2e.ti.com

www.ti.com/audio
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/omap
www.ti.com/wirelessconnectivity

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated