INTRODUCTION
The most important characteristic of CMOS-COPS is its low power consumption. This low power feature does not exist in TTL and NMOS systems which require the selection of low power IC’s and external components to reduce power consumption.

The optimization of external components helps decrease the power consumption of CMOS-COPS based systems even more.

A major contributor to power consumption is the crystal oscillator circuitry.

Table I presents experimentally observed data which compares the current drain of a crystal oscillator vs. an external squarewave clock source.

Table I clearly shows that an unoptimized crystal oscillator draws more current than an external squarewave clock. An RC oscillator draws even more current because of the slow rising signal at the CKI input.

Although there are few components involved in the design of the oscillator, several effects must be considered. If the requirement is only for a circuit at a standard frequency which starts up reliably regardless of precise frequency stability, power dissipation and etc., then the user could directly consult the data book and select a suitable circuit with proper components. If power consumption is a major requirement, then reading this application note might be helpful.

WHICH IS THE BEST OSCILLATOR CIRCUIT?
The Pierce Oscillator has many desirable characteristics. It provides a large output signal and drives the crystal at a low power level. The low power level leads to low power dissipation, especially at higher frequencies. The circuit has good short-term stability, good waveforms at the crystal, a frequency which is independent of power supply and temperature changes, low cost and usable at any frequency. As compared with other oscillator circuits, this circuit is not disturbed very much by connecting a scope probe at any point in the circuit, because it is a stable circuit and has low impedance. This makes it easier to monitor the circuit without any major disturbance. The Pierce oscillator has one disadvantage. The amplifier used in the circuit must have high gain to compensate for high gain losses in the circuitry surrounding the crystal.

<table>
<thead>
<tr>
<th>VCC</th>
<th>f_CK</th>
<th>Inst. cyc. time</th>
<th>I (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4V</td>
<td>32 kHz</td>
<td>125 µs</td>
<td>8.5</td>
</tr>
<tr>
<td>5.0V</td>
<td>32 kHz</td>
<td>125 µs</td>
<td>83</td>
</tr>
<tr>
<td>2.4V</td>
<td>1 MHz</td>
<td>4 µs</td>
<td>199</td>
</tr>
<tr>
<td>5.0V</td>
<td>1 MHz</td>
<td>4 µs</td>
<td>360</td>
</tr>
</tbody>
</table>

WHAT IS A PIERCE OSCILLATOR?
The Pierce is a series resonant circuit, and its basic configuration is shown below.

![Figure 1](image-url)
Ideally, the inverting amplifier provides 180°, the R1C1 integration network provides a 90° phase lag, and the crystal’s impedance which is a pure resistance at series resonance together with C2 acts as a second integration network which provides another 90° phase lag. The time constants of the two RC phase shifting networks should be made as big as possible. This makes their phase shifts independent of any changes in resistance or capacitance values. However, big RC values introduce large gain losses and the selected amplifier should provide sufficient gain to satisfy gain requirement. CMOS inverters or discrete transistors can be used as amplifiers. An experimental evaluation of crystal oscillators using either type of amplifier is given within this report.

CRYSTAL OSCILLATORS USING CMOS-IC
The use of CMOS-IC’s in crystal oscillators is quite popular. However, they are not perfect and could cause problems. The input characteristics of such IC’s are good, but they are limited in their output drive capability.

The other disadvantage is the longer time delay in a CMOS-inverter as compared to a discrete transistor. The longer this time delay the more power will be dissipated. This time delay is also different among different manufacturers.

As a characteristic of most CMOS-IC’s the frequency sensitivity to power supply voltage changes is high. As a group, IC’s do not perform very well when compared with discrete transistor circuits.

But let us not be discouraged. Low component count which leads to low cost is one good feature of IC oscillators. As a rule, IC’s work best at the low end of their frequency range and poorest at the high end.

Several types of crystal oscillators using CMOS-IC’s have been found to work satisfactorily in some applications.

CMOS—TWO INVERTER OSCILLATOR
The two inverter circuit shown in Figure 2 is a popular one. The circuit is series resonant and uses two cascaded inverters for an amplifier.

Each inverter has a DC biasing resistor which biases the inverter halfway between the logic “1” and “0” states. This will help the inverters to amplify when the power is applied and the crystal will start oscillation.

The 74C family works better as compared with other CMOS-IC’s. Will oscillate at a higher frequency and is less sensitive to temperature changes. The CMOS-COPs data sheet states that a crystal oscillator will typically draw 100 μA more than an external clock source. However, the crystal oscillator described above will draw approximately as much current as an external squarewave clock. The experimental data presented below shows the comparison:

- Chip held in Reset, VCC = +5.0V
- f = 455 kHz, COP444C, CKI is 8
- Instruction cycle time = 17.5 μs
- I = total power supply (VCC) current drain

<table>
<thead>
<tr>
<th>Oscillator Type</th>
<th>I (current drain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Osc. (data sheet)</td>
<td>950 μA</td>
</tr>
<tr>
<td>Crystal Osc. (two inverter)</td>
<td>810 μA</td>
</tr>
<tr>
<td>Ext. Clock</td>
<td>790 μA</td>
</tr>
</tbody>
</table>

PIERCE IC OSCILLATOR
Figure 3 shows a Pierce oscillator using CMOS inverter as an amplifier.

The gain of CMOS inverter is low, so the resistor R1 should be made small. This reduces gain losses. The output resistance of the inverter (Ro) can be the integrating resistor for the RoC1 phase lag network.

Omitting R1 or with a small value of R1, the crystal will be driven at a much higher voltage level. This will increase power dissipation.

For lower frequencies (i.e., 32 kHz), R1 must be large enough so that the inverter won’t overdrive the crystal. Also, if R1 is too large we won’t get an adequate signal back at the inverter’s input to maintain oscillation. With large values of R1 the inverter will remain in its linear region longer and will cause more power dissipation. Typically for 32 kHz, R1 should be constrained by the relation:

\[
\frac{1}{2\pi R_1 C_1} < 32 \text{ kHz}
\]

At higher frequencies, selection of R1 is again critical. In order to drive a heavy load at high frequency, the amplifier output impedance must be low. In order to isolate the oscillator output from C1 so it can drive the following logic stages, then R1 should be large. But again, R1 must not be too large, otherwise it will reduce the loop gain.
The value of R_1 is chosen to be roughly equal to the capacitive reactance of C_1 at the frequency of operation, or the value of load impedance Z_L.

$$Z_L = \frac{X_{C1}^2}{R_L}$$

$R_L = R_S$ = series resistance of crystal

The small values of C_1 and C_2 will help minimize the gain reduction they introduce.

Typically:

- $C_1 = C_2 = 220 \text{ pF at } 1 \text{ MHz}$
- $C_1 = C_2 = 330 \text{ pF at } 2 \text{ MHz}$

DISCRETE TRANSISTOR OSCILLATOR

As mentioned earlier, a discrete transistor circuit performs better than an IC circuit. The reason for this is that in a discrete transistor circuit it is easier to control the crystal’s source and load resistances, the gain and signal amplitude.

A discrete transistor circuit has shorter time delay, because it uses one or two transistors. This time delay should always be minimized, since it causes more power dissipation and shifts frequency with temperature changes. *Figure 4* shows a basic Pierce oscillator using a transistor as an amplifier.

![TL/DD/8439–4](image)

FIGURE 4

The basic phase shift network consists of C_{A1}, C_{B2} and the crystal which looks inductive and is series resonant with C_{A1} and C_{B1}. The phase shift through the transistor is 180° and the total phase shift around the loop is 360°. The condition of a unity loop gain must also be satisfied.

$$\frac{V_A}{V_B} = -\frac{C_B}{C_A}$$

$$\frac{V_A}{V_B} = -\frac{X_{CA}}{X_{CB}}$$

For oscillation to occur, the transistor gain must satisfy the relation

$$G = \frac{V_A}{V_B} \geq 1$$

where $G = -g_{m2}Z_L$

g_{m} is the transconductance of the transistor

Z_L is the load seen by the collector

$$Z_L = \frac{X_{B2}^2}{R_e} \quad X_B = -\frac{1}{WCB}$$

Re is the crystal’s effective series resistance.

The crystal’s drive level

$$P_d = \frac{V_{PP2}^2}{X_{B2}}$$

This drive level should not exceed the manufacturer’s spec.

Certain biasing conditions might cause collector saturation. Collector saturation increases oscillator’s dependence on the supply voltage and should be avoided.

The circuit of *Figure 5* has been tested and has a very good performance.

![TL/DD/8439–5](image)

FIGURE 5

This circuit will oscillate over a wide range of frequencies 2–20 MHz.

- Voltage (V_1) $= (5) (1.5) = 1.21 \text{V}$
- Base Current $= \frac{1.21-V_{BE}}{39k} = 15.6 \mu \text{A}$
- At Saturation ($V_{CE} = 0$)

$$I_C (\text{SAT}) = \frac{5}{1.2} = 4.2 \text{ mA}$$

![TL/DD/8439–6](image)

FIGURE 6

Voltage (V1):

- (5) (1.5) = 1.21V

Base Current:

- $\frac{1.21-V_{BE}}{39k} = 15.6 \mu \text{A}$

At Saturation (V_{CE} = 0):

$$I_C (\text{SAT}) = \frac{5}{1.2} = 4.2 \text{ mA}$$
Having 15.6 \(\mu \text{A} \) of base current, for saturation to occur

\[h_{FE} = \frac{4.2 \text{ mA}}{15.6 \mu \text{A}} = 269 \]

The DC beta for 3904 at 1 mA is 70 to 210, so no problem with saturation, even at lower supply voltages.

The current consumption (power supply \(V_{CC} \) current drain) of COP444C using the above oscillation circuit is around 267 \(\mu \text{A} \).

The circuit of Figure 6 is another configuration of discrete transistor oscillator.

The performance of above circuit is also good. The only drawback is that it does not provide larger output signal.

CONCLUSION

As discussed within this report, a discrete transistor circuit gives better performance than an IC circuit. However, oscillators using discrete transistors are more expensive than those using IC’s when assembly labor costs are included. So, the selection of either circuit is a trade-off between better performance and cost.

The data and circuits presented here are intended to be used only as a guide for the designer. The networks described are generally simple and inexpensive and have all been observed to be functional. They only provide greater flexibility in the oscillator selection for CMOS-COPS systems.

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in automotive applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers represent that they are solely responsible for any damages arising out of the use of TI products in such safety-critical applications.

TI products are not designed or intended to be used in life support equipment or critical medical equipment, unless TI specifically designates the TI product to be used in such equipment.Life support equipment or critical medical equipment means equipment required for medical treatment, monitoring, or diagnosis of a patient, and, if the equipment fails, would be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in automotive applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers represent that they are solely responsible for any damages arising out of the use of TI products in such safety-critical applications.

TI products are not designed or intended for use in automotive applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers represent that they are solely responsible for any damages arising out of the use of TI products in such safety-critical applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated