AN-9 Universal Balancing Techniques

ABSTRACT
IC op amps are widely accepted as a universal analog component. Although the circuit designs may vary, most devices are functionally interchangeable. However, offset voltage balancing remains a personality trait of the particular amplifier design. The techniques shown here allow offset voltage balancing without regard to the internal circuitry of the amplifier.

Contents
1 Introduction ... 2

List of Figures
1 Offset Voltage Adjustment for Inverting Amplifiers Using 10 kΩ Source Resistance or Less 2
2 Offset Voltage Adjustment for Inverting Amplifiers Using Any Type of Feedback Element 2
3 Offset Voltage Adjustment for Non-Inverting Amplifiers ... 3
4 Offset Voltage Adjustment for Voltage Followers ... 3
5 Offset Voltage Adjustment for Differential Amplifiers ... 4
1 Introduction

IC op amps are widely accepted as a universal analog component. Although the circuit designs may vary, most devices are functionally interchangeable. However, offset voltage balancing remains a personality trait of the particular amplifier design. The techniques shown here allow offset voltage balancing without regard to the internal circuitry of the amplifier.

![Circuit Diagram](image)

R1 = 2000 R3 \(\parallel \) R4
R4 \(\parallel \) R3 \(\leq \) 10 k\(\Omega \)
RANGE = \(\pm \sqrt{\frac{R3 \parallel R4}{R1}} \)

Figure 1. Offset Voltage Adjustment for Inverting Amplifiers Using 10 k\(\Omega \) Source Resistance or Less

The circuit shown in Figure 1 is used to balance out the offset voltage of inverting amplifiers having a source resistance of 10 k\(\Omega \) or less. A small current is injected into the summing node of the amplifier through R1. Since R1 is 2000 times as large as the source resistance the voltage at the arm of the pot is attenuated by a factor of 2000 at the summing node. With the values given and \(\pm 15V \) supplies the output may be zeroed for offset voltages up to \(\pm 7.5 \) mW.

If the value of the source resistance is much larger than 10 k\(\Omega \), the resistance needed for R1 becomes too large. In this case it is much easier to balance out the offset by supplying a small voltage at the non-inverting input of the amplifier. Figure 2 shows such a scheme. Resistors R1 and R2 divide the voltage at the arm of the pot to supply a \(\pm 7.5 \) mW adjustment range with \(\pm 15V \) supplies.

This adjustment method is also useful when the feedback element is a capacitor or non-linear device.

![Circuit Diagram](image)

RANGE = \(\pm \sqrt{\frac{R2}{R1}} \)

Figure 2. Offset Voltage Adjustment for Inverting Amplifiers Using Any Type of Feedback Element

This technique of supplying a small voltage effectively in series with the input is also used for adjusting non-inverting amplifiers. As is shown in Figure 3, divider R1, R2 reduces the voltage at the arm of the pot to \(\pm 7.5 \) mW for offset adjustment. Since R5 appears in series with R4, R5 should be considered when calculating the gain. If R4 is greater than 10 k\(\Omega \) the error due to R5 is less than 1%.
A voltage follower may be balanced by the technique shown in Figure 4. \(R_1 \) injects a current which produces a voltage drop across \(R_3 \) to cancel the offset voltage. The addition of the adjustment resistors causes a gain error, increasing the gain by 0.05%. This small error usually causes no problem. The adjustment circuit essentially causes the offset voltage to appear at full output, rather than at low output levels, where it is a large percentage error.

Differential amplifiers are somewhat more difficult to balance. The offset adjustment used for a differential amplifier can degrade the common mode rejection ratio. Figure 5 shows an adjustment circuit which has minimal effect on the common mode rejection. The voltage at the arm of the pot is divided by \(R_4 \) and \(R_5 \) to supply an offset correction of ±7.5 mV. \(R_4 \) and \(R_5 \) are chosen such that the common mode rejection ratio is limited by the amplifier for values of \(R_3 \) greater than 1 kΩ. If \(R_3 \) is less than 1k the shunting of \(R_4 \) by \(R_5 \) must be considered when choosing the value of \(R_3 \).
The techniques described for balancing offset voltage at the input of the amplifier offer two main advantages: First, they are universally applicable to all operational amplifiers and allow device interchangeability with no modifications to the balance circuitry. Second, they permit balancing without interfering with the internal circuitry of the amplifier. The electrical parameters of the amplifiers are tested and guaranteed without balancing. Although it doesn't usually happen, balancing could degrade performance.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated