LB-52

LB-52 A Low-Noise Precision Op Amp

Literature Number: SNOA702

A Low-Noise Precision Op Amp

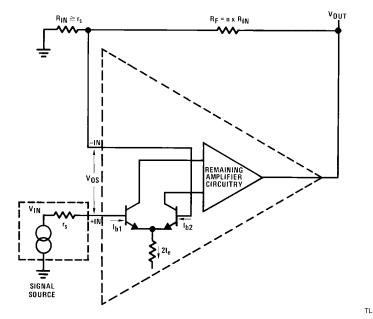
National Semiconductor Linear Brief 52 Robert A. Pease December 1980

It is well known that the voltage noise of an operational amplifier can be decreased by increasing the emitter current of the input stage. The signal-to-noise ratio will be improved by the increase of bias, until the base current noise begins to dominate. The optimum is found at:

$$I_{e(optimum)} = \frac{KT}{q} \frac{\sqrt{h_{FE}}}{r_s}$$

where r_S is the output resistance of the signal source. For example, in the circuit of Figure 1, when $r_S=1~k\Omega$ and $h_{FE}=500,$ the l_e optimum is about 500 μA or 560 μA . However, at this rich current level, the DC base current will cause a significant voltage error in the base resistance, and even after cancellation, the DC drift will be significantly bigger than when l_e is smaller. In this example, $l_b=1~\mu A,$ so $l_b\times r_S=1$ mV. Even if the l_b and r_s are well matched at each input, it is not reasonable to expect the $l_b\times r_S$ to track better than 5 or 10 $\mu V/^\circ C$ versus temperature.

A new amplifier, shown in *Figure 2*, operates one transistor pair at a rich current, for low noise, and a second pair at a much leaner current, for low base current. Although this looks like the familiar Darlington connection, capacitors are added so that the noise will be very low, and the DC drift is very good, too. In the example of *Figure 2*, Q2 runs at $l_e=500~\mu\text{A}$ and has very low noise. Each half of Q1 is operated at 11 $\mu\text{A}=l_e$. It will have a low base current (20 nA to 40 nA typical), and the offset current of the com-


posite op amp, $I_{b1}-I_{b2}$, will be very small, 1 nA or 2 nA. Thus, errors caused by bias current and offset current drift vs. temperature can be quite small, less than 0.1 μ V/°C at r_s = 10000

The noise of Q1A and Q1B would normally be quite significant, about 6 nV/ $\sqrt{\text{Hz}}$, but the 10 μF capacitors completely filter out the noise. At all frequencies above 10 Hz, Q2A and Q2B act as the input transistors, while Q1A and Q1B merely buffer the lowest frequency and DC signals.

For audio frequencies (20 Hz to 20 kHz) the voltage noise of this amplifier is predicted to be 1.4 nV/ $\sqrt{\text{Hz}}$, which is quite small compared to the Johnson noise of the 1 k Ω source, 4.0 nV/ $\sqrt{\text{Hz}}$. A noise figure of 0.7 dB is thus predicted, and has been measured and confirmed. Note that for best DC balance R6 = 976 Ω is added into the feedback path, so that the total impedance seen by the op amp at its negative input is 1 k Ω . But the 976 Ω is heavily bypassed, and the total Johnson noise contributed by the feedback network is below $\frac{1}{2}$ nV/ $\sqrt{\text{Hz}}$.

To achieve lowest drift, below 0.1 μ V/°C, R1 and R2 should, of course, be chosen to have good tracking tempco, below 5 ppm/°C, and so should R3 and R4. When this is done, the drift referred to input will be well below 0.5 μ V/°C, and this has been confirmed, in the range +10°C to +50°C.

Overall, we have designed a low-noise op amp which can rival the noise of the best audio amplifiers, and at the same

 $V_{OUT} \cong (n+1) \ V_{IN} + V_{OS} \times (n+1) + (I_{b2} - I_{b1}) \times r_s \times (n+1) + V_{noise} \times (n+1) + I_{noise} \times (r_s + R_{IN}) \times (n+1)$

FIGURE 1. Conventional Low-Noise Operational Amplifier

To optimize the circuit for other r_s levels, the emitter current for Q2 should be proportional to $1/\sqrt{r_s}$. The emitter current of Q1A should be about ten times the base current of Q2A. The base current of the output op amp should be no more than 1/1000 of the emitter current of Q2. The values of R1 and R2 should be the same as R7.

Various formulae for noise:

Voltage noise of a transistor, per $\sqrt{\text{Hz}}$, $e_n = \text{KT} \sqrt{\frac{2}{ql_C}}$

Current noise of a transistor, per $\sqrt{\text{Hz}}, i_{\text{n}} = \sqrt{\frac{2qI_{\text{C}}}{h_{\text{FE}}}}$

Voltage noise of a resistor, per \sqrt{Hz} , $e_n = \sqrt{4 \text{ KTR}_s}$

For a more complete analysis of low-noise amplifiers, see AN-222, "Super Matched Bipolar Transistor Pair Sets New Standards for Drift and Noise", Carl T. Nelson.



FIGURE 2. New Low-Noise Precision Operational Amplifier as Gain-of-1000 Pre-Amp

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 3 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>